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Emergence of large scale 

structures in barotropic turbulence 



Turbulent flows are organized into vortices and jets 

? 
(Richards et al 2006) 
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Simplest model: barotropic flow on a beta-plane 

• Simplest setting 

 

 

 

 

 

 

• Spatially homogeneous forcing that is delta-correlated in time 

 

 

 

 

 

 

• Isotropic forcing injecting energy at rate ε in a narrow ring at Kf 

                         

 

 
 

non-divergent flow in a  

doubly periodic β-plane channel 
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Two regime transitions in the flow 
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Two regime transitions in the flow 
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Non-zonal westward propagating coherent structures  
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Two regime transitions in the flow 
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Zonal jets emerge, NZCS persist but slow down 
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Develop a theory that accurately predicts: 

 

 

• The regime transitions in the flow (NZCS, jet emergence) 

 

 

 

• The characteristics (scale, amplitude, phase speed) of the  

  emergent structures 

 

 

 

• Provides an explanation for the dynamics underlying structure formation 

 

Our goal 



Theory for the statistical state dynamics: S3T 

• Stochastic Structural Stability Theory (S3T) 

 

  Farrell & Ioannou 2003 

 

  Related: Cumulant Expansion (CE2)  Marston et al. 2008 

 

 

• Variables : mean + deviation :  ζ = Ζ + ζ’ 
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Cumulant expansion 
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Cevolution of 1st cumulant 
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CE2:                                                            ignore the eddy-eddy 

 

 

S3T: 

 

eddy-eddy term acting as stochastic forcing and dissipation 

 

 

• Ergodic assumption: ensemble average = time average 

  

 

 

 

 

 

 

Closed, deterministic system for the coherent flow & eddy statistics   

Second order closure of cumulant expansion 
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turbulent eddies 

mean structure 

intensify the mean 

structure through  

upgradient 

vorticity fluxes 

organizes the eddies  

so that the eddy fluxes  

are reinforced 

Regime transitions in turbulence as an instability 
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• Linearization: study the evolution of small perturbations in the mean  

  structure δZ  and in the eddy statistics δC : 
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Stability of homogeneous equilibrium 
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Critical curve 



S3T predicts the first regime transition 
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Most unstable structures 

stationary 

zonal jets 

propagating  

non-zonal  

structures 



Equilibration of instabilities: emergent structures 
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Accurate prediction of scale, amplitude 
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S3T 



Accurate prediction of phase speed 
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2nd transition: the traveling waves become unstable 

the finite amplitude traveling wave states become unstable to zonal jets 



Accurate prediction of the second transition 
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Develop a theory that accurately predicts: 

 

 

• The regime transitions in the flow (NZCS, jet emergence) 

 

 

 

• The characteristics (scale, amplitude, phase speed) of the  

  emergent structures 

 

 

 

• Provides an explanation for the dynamics underlying structure formation 

 

Our goal 



Eddy-mean flow dynamics underlying instability 

S3T stability around 

no mean flow 

δ 

δ δ 

δ 



Wave-mean flow dynamics underlying jet emergence 

• We change the mean flow by δΖ and assume that the change is slow 

enough that the eddies are in equilibrium with the mean flow 

 

 

 

 

 

 

 

 

 

• Study the contribution of each forced wave in the flux divergence  
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Eddy-mean flow dynamics underlying instability 

S3T stability around 

no mean flow 

δ 

δ δ 

δ 

forced eddy 

eddy perturbation 

mean flow perturbation 



Which of the eddies matter ? (β<<1 limit) 

• Fluxes are determined by the sum of the effect of a broad band of eddies 

 

• Orr dynamics (no time to show) 

 

• Derive asymptotic expressions for the fluxes  

 

  (negative hyper-diffusion) 
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Which of the eddies matter ? (β>>1 limit) 

• a narrow band of eddies 

 

• Satisfy the near resonant  

  condition ωk+ωn-ωk+n~O(1/β) 

  

 

• Modulational instability  

   

   (but in a forced-dissipative    

    turbulent flow !!!!)  



Take home messages… 

Using S3T, we are able to accurately predict: 
 

 

• The regime transitions in the flow with the emergence of non-zonal 

westward propagating coherent structures and the emergence of zonal 

jets 
 

• The scale, amplitude and phase speed of the emergent coherent 

structures in the turbulent flow 
 

 

Using S3T we were able to study in detail the eddy-mean flow dynamics  

underlying the instability 

 

S3T is a powerful tool to study bifurcations in turbulence and do stability 

theory for the cooperative interaction between turbulence and mean 

structures 



 

 

 

Thank   you ! 
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