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Kuroshio Bistability
An example where rare transitions matter in ocean dynamics

M. J. Schmeits and H. A. Dijkstra
(adapted from Taft)

Primitive equation model - Qiu and
Miao (2000)

Are two successive transitions statistically independent ? Can
we compute the transition times (or transition rate)?

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Rare Transitions in Rotating Tank Experiments
The rotation as an ordering field (Quasi Geostrophic dynamics)

Transitions between blocked and zonal states

Y. Tian and col, J. Fluid. Mech. (2001) (groups of H. Swinney and
M. Ghil)
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Jupiter’s Zonal Jets
We look for a theoretical description of zonal jets

Jupiter’s atmosphere
Jupiter’s zonal winds (Voyager and
Cassini, from Porco et al 2003)

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Have we Lost One of Jupiter’s Jets?
What is the probability of this event ?

Jupiter’s white ovals (see
Youssef and Markus 2005)

The white ovals appeared in 1939-1940 (Rogers 1995). Following
an instability of the zonal jet?

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Abrupt Climate Changes
Long times matter

Temperature versus time: Dansgaard–Oeschger events (S. Rahmstorf)

What is the dynamics and probability of abrupt climate
changes?

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Random Transitions in Turbulence Problems
Magnetic Field Reversal (Turbulent Dynamo, MHD Dynamics)

Magnetic field timeseries Zoom on reversal paths

(VKS experiment)

In turbulent flows, transitions from one attractor to another
(reactive paths) often occur through a predictable path.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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The Main Scientific Issues

How to characterize and predict the attractors of turbulent
geophysical flows?
In case of multiple attractors, can we compute their relative
probability?
Can we compute the transition paths and the transition rates?
For most geophysical problems, an approach through direct
numerical simulation is impossible (trade off between realistic
turbulence representation and physical time - here one need
both).
Can we devise new theoretical and numerical tools to tackle
these issues?

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Extreme Heat Waves
Example: the 2003 heat wave over western Europe

July 20 2003-August 20 2003 land surface temperature minus the
average for the same period for years 2001, 2002 and 2004

(TERRA MODIS).
F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Rogue WavesLarge deviation theory and extreme waves 3

this limit. For instance, for a stationary process with
Cij = C|i�j| and ⌥ =


C0 the signal-to-noise ratio for

the conditional process under (5) is

E [Xi|A]◆
E [X ⇧2

i |A]
=

a

⌥

Ci◆
⌥2 � C2

i

. (7)

This shows that for fixed i the relative error becomes
small if a ⌦ ⌥. Also, for fixed relative amplitude a/⌥
the relative error becomes large if i becomes large and
Ci goes to zero. This shows that in the case of a very
large amplitude a/⌥ at i = 0 the shape of the random
process near i = 0 (where Ci ⌥ ⌥2) is essentially deter-
ministic. Far away from i = 0 (where |Ci|  ⌥2) the
influence of the extreme event has faded away. Based
on this fact the easily computed autocorrelation func-
tion of a random process emerges as a simple candidate
shape for large-amplitude waves.

Draupner rogue wave

As said before, the basic results in the last section are
well known in surface wave oceanography as are their
natural extensions to continuous functions, in which
both the function value and a zero slope can be speci-
fied at one point. For moderate values of a/⌥ this helps
discerning maxima of the wave field, although for large
a/⌥ a zero slope is virtually implied by the large func-
tion value, which with high probability corresponds to
a maximum of the wave field.

This approach has also been used to analyze data
sets from rogue waves such as the Draupner wave, al-
though there are far too few data sets to allow a com-
prehensive study. Of particular interest is the recent
work on the Draupner wave by Walker et al. [2004],
who adjusted the most likely shape in (6a) with nonlin-
ear Stokes corrections up to fifth order. This heuristic
procedure, in which the classical Stokes correction ex-
pansion for nearly monochromatic small-amplitude sur-
face waves is applied to the Fourier components of the
most likely large wave, narrows the peaks and widens
the troughs of the shape. Figure 1 shows that this im-
proves the fit with the Draupner wave. Importantly,
this nonlinear procedure also breaks the explicit linear
up–down symmetry in (6a), which is clearly unrealistic
for surface waves because according to this theory the
most likely shape of a wave with large surface depres-
sion X0 = �a would be given by the inverted shape in
(6a).

Large deviation theory

The previous results are examples of large devia-
tion theory (LDT), which deals quite generally with the
structure and the probability of rare events in random

the Draupner data can be approximated as:

hðtÞZ a cos 4C
1:10

70
a2 cos 24C

1:57

702
a3 cos 34: (11)

The slight discrepancy between the values of S22 found
for zero skewness (S22w1.0) and the value computed using
kdZ1.6 (S22Z1.10) can be attributed to the relatively small
effect of directional spreading on the magnitude of second-
order sum contributions (Forristall [10]).

5. Fifth-order NewWave

When the linear NewWave profile is compared against
the New Year wave profile, considerable mismatch is found.
The NewWave model is now modified to include nonlinear
corrections up to fifth order using the theory outlined in
Appendix A; modified versions of the Stokes coefficients
defined by Fenton [9] are used and suitable expressions for

the temporal contributions for all nonlinear terms up to fifth
order have been derived using the linear wave record and its
Hilbert transform. For the estimation of the Stokes
coefficients kdZ1.6 has again been used. Fig. 8 plots the
fifth-order NewWave profile together with its first-, second-
and third-order contributions (fourth- and fifth-order
contributions have been excluded as they are too small to
clearly illustrate graphically). Fig. 8 also shows a compari-
son between the fifth-order NewWave and the New Year
wave. A linear NewWave amplitude of 14.7 m is used as
this corresponds to an amplitude of 18.5 m in the fifth-order
corrected NewWave profile, matching the amplitude of the
measured New Year wave. This comparison does not
incorporate any representation of the second-order differ-
ence contribution. This is discussed in Sections 7–9.

The effects of including nonlinear contributions are
largely as one would expect; the crests become narrowed
and raised, while the troughs are broadened and raised. As
one would expect, the size of the nonlinear contributions
decreases rapidly as the order increases. Beyond second
order, the effects of nonlinearity are most pronounced close
to the apex of a crest; the crest is sharpened further.
Quantitatively, by including nonlinear corrections up to fifth
order, the peak crest of the NewWave profile has been raised
by 26% (from 14.7 to 18.5 m) whereas the deepest troughs
have been raised by 17% (from 10.0 to 8.3 m). The
agreement between the fifth-order NewWave profile and
the New Year wave profile close to the peak is surprisingly
good, with the broad banded nature of the freak wave being
captured quite well. The troughs either side of the peak crest
are still predicted to be too deep; the actual trough depths
are 6.5 and 7.1 m. Hence the New Year wave is slightly
broader banded, having shallower troughs and lower crests
adjacent to the main peak.

Assuming the standard Rayleigh distribution for linear
crest amplitude and taking the linear crest amplitude to be
14.7 m, it is found that the New Year wave is approximately
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Fig. 7. Stokes second- and third-order sum coefficients, S22 and S33, plotted

against kd. Horizontal lines are shown corresponding to the S22 values

computed for zero skewness. A vertical line is drawn at kdZ1.6.

Fifth order NewWave with its first, second and third order contributions
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Fig. 8. A comparison of the fifth-order NewWave profile with its constituent contributions (first, second and third order only) and the New Year wave.

D.A.G. Walker et al. / Applied Ocean Research 26 (2004) 73–8378

Figure 1. Draupner rogue wave data together with large
deviation estimate (termed “NewWave”) based on (6a) com-
bined with Stokes corrections. The covariance function was
estimated from 20 mins of storm data near the time of the
rogue wave. The top panel shows the bare prediction (dot-
dashed line) and its modification including Stokes correc-
tions to fifth order (dotted line). The bottom panel shows
the fit of actual wave (full line) by the prediction (dotted
line). From Walker et al. [2004].

systems. LDT allows access to asymptotic results simi-
lar to (6a), but in a much wider range of settings. There
are two key ingredients: first, that the set of configura-
tions that contribute significantly to the probability of
a rare event is tightly localized around the most likely
configuration; and second, that the most likely configu-
ration can be computed by constrained minimization of
a suitable action functional. Both points are neatly il-
lustrated by the present example of a discrete Gaussian
process.

To this end it is convenient to consider the family
of scaled processes ⌅Xi with covariance matrix ⌅2Cij

where ⌅ > 0 is a small parameter. We then consider
the event that ⌅X0 ⌃ a for some fixed a > 0, which
is clearly a rare event for small values of ⌅. It is intu-
itively obvious that for large a/(⌅⌥) the most important
contributions to the probability of this event will come
from configurations in which ⌅X0 � a is small. We can
check this because P [⌅X0 ⌃ a] is easily computed from
the one-point marginal distribution for X0 as

1

⌅⌥


2⌃

✏ ⌃

a

exp

�
� x2

2⌅2⌥2

 
dx =

exp

�
� a2

2⌅2⌥2

 
1

⌅⌥


2⌃

✏ ⌃

0

exp

�
� ay

⌅2⌥2
� y2

2⌅2⌥2

 
dy

after the substitution y = x � a. Here ⌅2⌥2 = ⌅2C00

is the variance of ⌅X0. By Laplace’s method for expo-
nential integrals, the final integral is very well approxi-
mated by ⌅2⌥2/a if ⌅ 1. This implies localization be-
tween ⌅X0 = a and a plus a modest multiple of ⌅⌥2/a.

Draupner rogue wave and Walker
et al. large deviation theory.

Walker et al (2004) (see also a nice account by Oliver Buhler
(2007)).

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Rare Events with a Huge Impact

Heat waves, rogue waves, floods, droughts, extreme
precipitations, and so on

The scientific questions:
What is the probability and the dynamics of those rare events?
Is the dynamics leading to such rare events predictable?
How to sample rare events, their probability, and their
dynamics.
Are direct numerical simulations a reasonable approach?
Can we devise new theoretical and numerical tools to tackle
these issues?

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Large Deviation Theory for Dynamical Systems

Large deviation theory is a general framework to describe
probability distribution in asymptotic limits

Pε [X = x ] ≈
ε�1

Ce−
F [x]

ε .

For equilibrium statistical mechanics, F is the free energy, and
ε = kBT/N.

Three main frameworks for large deviations for dynamical systems:
Dynamical systems with small noises: Freidlin-Wentzell theory.
Large deviations for time integrated observable:
Donsker–Varadhan.
Large deviations for the slow evolution of dynamical systems
with two time scales (talk of Tomas Tangarife yesterday).

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Kramer’s Problem: a Pedagogical Example for Bistability

Historical example: Computation by Kramer of Arrhenius’ law for
a bistable mechanical system with stochastic noise

dx

dt
=−dV

dx
(x) +

√
2kBTeη (t) Rate : λ =

1
τ
exp
(
− ∆V

kBTe

)
.
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)

τ / < τ>

< τ > = 36.2

The problem was solved by Kramer (30’). Modern approach: path
integral formulation (instanton theory, physicists) or large deviation
theory (Freidlin–Wentzell, mathematicians).

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Path Integrals for ODE – Onsager Machlup (50’)

Path integral representation of transition probabilities:

P (xt ,T ;x0,0) =
∫ x(T )=xT

x(0)=x0
e
− AT [x]

2kBTe D [x]

with AT [x] =
∫ T

0
L [x , ẋ] dt and L [x , ẋ] =

1
2

[
ẋ +

dV
dx

(x)

]2
.

The most probable path from x0 to xT is the minimizer of

AT (x0,xT ) = min
{x(t)}

{AT [x ] |x(0) = x0 and x(T ) = xT } .

We may consider the low temperature limit, using a saddle
point approximation (WKB), Then we obtain the large
deviation result

−2kBTe logP (xT ,T ;x0,0) ∼
kBTe
∆V →0

min
{x(t)}

{AT [x ] |x(0) = x0 and x(T ) = xT }

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Most Transition Paths Follow the Instanton

In the weak noise limit, most transition paths follow the most
probable path (instanton)

Figure by Eric Van
den Eijnden

For gradient dynamics, instantons are time reversed relaxation
paths from a saddle to an attractor. Arrhenius law then
follows

logP (x1,T ;x−1,0) ∼
kBTe
∆V →0

− ∆V

kBTe
.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Non Gradient Dynamics and Transverse Decomposition

Does this phenomenology remain true for non gradient
dynamics? For instance for turbulent flows.

dx
dt

= b(x) +
√
2εη (t)

Generically, there exists a transverse decomposition

b(x) =−∇V (x) +G(x) with for all x, ∇V (x).G(x) = 0.

Then

logP (x1,T ;x−1,0)∼
min{x(t)|x(0)=x0 and x(T )=xT } {AT [x ]}

2ε
=−∆V

ε
.

The phenomenology holds for most non-gradient dynamics.
The difficulty is to compute V (or G).

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Numerical Computation of Action Minima

dx
dt

= b(x) +
√
2εη (t) .

Action
A [x] =

∫ T

0
L [x, ẋ] dt and L [x,_x] =

1
2

[ẋ−b(x)]2.

Numerical computation of action minima.

E. Vanden-Eijnden, W. E and W. Ren, (2004). E Vanden-Eijnden
and M Heymann, (2008).
Tobias Grafke will discuss applications to the Burger equation this
afternoon.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Non-Equilibrium Phase Transition for the 2D Navier–Stokes
Eq.
The time series and PDF of the Order Parameter

Order parameter : z1 =
∫
dxdy exp(iy)ω (x ,y).

For unidirectional flows |z1| ' 0, for dipoles |z1| ' 0.6−0.7

F. Bouchet and E. Simonnet, PRL, 2009.
F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Most Probable Transitions (Instantons) for the 2D
Navier-Stokes Eq.
With J. Laurie

Large deviation theory: instantons as minimum action paths.

2D Navier-Stokes equations
(time: 10 000) (PRL)

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

|ω̂
(0

,1
)|

|ω̂(1,0)|

Numerical instanton (time of
order 1) (J. Stat. Phys.)

J. Laurie and F. Bouchet, Computation of rare transitions in the
barotropic quasi-geostrophic equations, New J. Phys., 2014

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Rare Events and Adaptive Multilevel Splitting
AMS: an algorithm to compute rare events, for instance rare reactive trajectories

AMS algorithm

Probability estimate:

α̂ = ∏P(lk , lk+1)

with P(lk , lk+1) = (1−1/N)

F. Cérou, A. Guyader. (2007) F. Cérou, A.Guyader, T. Lelièvre, and D.
Pommier (2011).

Eric Simonnet will use this algorithm to compute rare transition for
quasi-geostrophic zonal jets similar to Jupiter jets.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Sampling Extreme Heat Waves using Large Deviation
Algorithms (with J. Wouters and F. Ragone)

2010 Heat Wave over Eastern Europe (Dole and col., 2011)

Computing the dynamical paths leading to extreme heat waves
through rare event algorithms.
We use the Planet Simulator (PlaSim) model (an Earth system
model of intermediate complexity).

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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GFD Problems Solved using Large Deviation Theory

Few more papers using large deviation theory and/or rare event
algorithms in a Geophysical Fluid Dynamics context:

P. H. Haynes and J. Vanneste, Dispersion in the
large-deviation regime. Part 1: shear flows and periodic flows,
J. Fluid Mech., 2014.
P. H. Haynes and J. Vanneste, Dispersion in the
large-deviation regime. Part 2: cellular flows at large Péclet
number, J. Fluid Mech., 2014.
J. G. Esler, Adaptive stochastic trajectory modeling in the
chaotic advection regime, JFM, in press.
F. Bouchet, and A. Venaille, Statistical mechanics of
two-dimensional and geophysical flows, Physics Reports, 2012.
F. Bouchet, J. Laurie and O. Zaboronsky, Langevin dynamics,
large deviations and instantons for the quasi-geostrophic
model,J. Stat. Phys., 2014.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Summary and Perspectives

Large deviation theory can be applied to geophysical
turbulence.
The dynamics leading to rare events is usually predictable,
even for turbulent flows.
With rare event algorithms, we can compute probability of rare
events that can not be sampled using direct numerical
simulations.
This is a promising field that will help answering scientific
issues that can not be adressed using classical theoretical or
numerical tools.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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