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@ Rare events may matter in geophysical fluid dynamics
@ Rare transitions between two attractors
@ Rare events that have a huge impact

© Large deviation theory and rare transitions
@ Large deviation theory for dynamical systems
@ Large deviations in the weak noise regime (Freidlin-Wentzell)

© Numerical computation of rare events
@ Computing numerically action minima (instantons)
@ Adaptive multilevel splitting: an example of rare event
algorithm based on selection and cloning
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Kuroshio Bistability

An example where rare transitions matter in ocean dynamics
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Primitive equation model - Qiu and
Miao (2000)
@ Are two successive transitions statistically independent 7 Can
we compute the transition times (or transition rate)?

M. J. Schmeits and H. A. Dijkstra
(adapted from Taft)
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Rare Transitions in Rotating Tank Experiments
The rotation as an ordering field (Quasi Geostrophic dynamics)

Transitions between blocked and zonal states

Y. Tian and others Eastward jet over topography
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Y. Tian and col, J. Fluid. Mech. (2001) (groups of H. Swinney and
M. Ghil)
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Jupiter’'s Zonal Jets

We look for a theoretical description of zonal jets

Planetocentrc ltitude (de9)

Velochy (mis) Storms

Jupiter’s zonal winds (Voyager and

iter’ h .
Jupiter's atmosphere Cassini, from Porco et al 2003)
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Have we Lost One of Jupiter's Jets?
What is the probability of this event ?

Jupiter’'s white ovals (see
Youssef and Markus 2005)
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The white ovals appeared in 1939-1940 (Rogers 1995). Following
an instability of the zonal jet?
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Abrupt Climate Changes

Long times matter
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Temperature versus time: Dansgaard—Oeschger events (S. Rahmstorf)

@ What is the dynamics and probability of abrupt climate
changes?
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Random Transitions in Turbulence Problems

Magnetic Field Reversal (Turbulent Dynamo, MHD Dynamics)
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Magnetic field timeseries ~ Zoom on reversal paths
(VKS experiment)

In turbulent flows, transitions from one attractor to another
(reactive paths) often occur through a predictable path.
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The Main Scientific Issues

@ How to characterize and predict the attractors of turbulent
geophysical flows?

@ In case of multiple attractors, can we compute their relative
probability?

@ Can we compute the transition paths and the transition rates?

@ For most geophysical problems, an approach through direct
numerical simulation is impossible (trade off between realistic
turbulence representation and physical time - here one need
both).

@ Can we devise new theoretical and numerical tools to tackle
these issues?
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Extreme Heat Waves
Example: the 2003 heat wave over western Europe

July 20 2003-August 20 2003 land surface temperature minus the
average for the same period for years 2001, 2002 and 2004
TERRA MODIS).
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Rogue Waves

Comparison of fifth order NewWave with New Year wave

Time (s)

Draupner rogue wave and Walker
et al. large deviation theory.

Walker et al (2004) (see also a nice account by Oliver Buhler
(2007)).
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Rare Events with a Huge Impact

@ Heat waves, rogue waves, floods, droughts, extreme
precipitations, and so on
The scientific questions:
@ What is the probability and the dynamics of those rare events?
@ Is the dynamics leading to such rare events predictable?

@ How to sample rare events, their probability, and their
dynamics.

Are direct numerical simulations a reasonable approach?

Can we devise new theoretical and numerical tools to tackle
these issues?
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Large Deviation Theory for Dynamical Systems

@ Large deviation theory is a general framework to describe
probability distribution in asymptotic limits

@ For equilibrium statistical mechanics, .# is the free energy, and
€= kB T/N.
Three main frameworks for large deviations for dynamical systems:
@ Dynamical systems with small noises: Freidlin-Wentzell theory.

o Large deviations for time integrated observable:
Donsker—Varadhan.

@ Large deviations for the slow evolution of dynamical systems
with two time scales (talk of Tomas Tangarife yesterday).
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© Large deviation theory and rare transitions

@ Large deviations in the weak noise regime (Freidlin-Wentzell)

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Large deviation theory for dynamical systems

Large deviation theory and rare transitions Large deviations in the weak noise regime (Freidlin—-Wentzell

Kramer's Problem: a Pedagogical Example for Bistability

Historical example: Computation by Kramer of Arrhenius’ law for
a bistable mechanical system with stochastic noise
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The problém was solved by Kramer (30'). Modern approad'{:p path
integral formulation (instanton theory, physicists) or large deviation
theory (Freidlin—Wentzell, mathematicians).
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Path Integrals for ODE — Onsager Machlup (50")

o Path integral representation of transition probabilities:

x(T)=x7 _ “rb]
P(Xr,T;Xo,O):/ e *sTe P x|
x(0)=xo0

with /7 [x] = /C;T.,ip[x,)%] dt and Z[x,] = % {H Z—Z(x)r.

@ The most probable path from xg to x7 is the minimizer of

At(x0,XT) = {rp(itr;} {1 [x]|x(0) = x0 and x(T) =x7}.

@ We may consider the low temperature limit, using a saddle
point approximation (WKB), Then we obtain the large
deviation result

—2kg Telog P (x7, T x0,0) o {T(itr)]} {77 [x]|x(0) = x0 and x(T) = x7 ]
-B7F—0
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Large deviation theory and rare transitions

Most Transition Paths Follow the Instanton

@ In the weak noise limit, most transition paths follow the most
probable path (instanton)

Figure by Eric Van
den Eijnden

paths from a saddle to an attractor. Arrhenius law then

follows
AV

_kBTe.

log P (x1, T;x_1,0) o
g7 0
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Non Gradient Dynamics and Transverse Decomposition

@ Does this phenomenology remain true for non gradient
dynamics? For instance for turbulent flows.

dx

% =b(x)+v2en ()

@ Generically, there exists a transverse decomposition

b(x) = —VV/(x) + G(x) with for all x, VV(x).G(x) = 0.

@ Then

MiN L (e)x(0)=x0 and x(T)=xr } ZTBI AV

log P(x1, T;x-1,0) ~ e =——

@ The phenomenology holds for most non-gradient dynamics.
The difficulty is to compute V' (or G).
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Numerical Computation of Action Minima

o =b(x)+V2en (1).

@ Action
o [x] = / Z[x,x] dt and ¥ [x,x] = [xfb(x)]z.

@ Numerical computation of action minima.

E. Vanden-Eijnden, W. E and W. Ren, (2004). E Vanden-Eijnden

and M Heymann, (2008).
Tobias Grafke will discuss applications to the Burger equation this

afternoon.
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Numerical computation of rare events

Non-Equilibrium Phase Transition for the 2D Navier—Stokes

Eq.

The time series and PDF of the Order Parameter

5=1.02 &=1.04

IPP—
Stochastic Navier Stokes 2-D periodic (L)L, = 1.02,v=10") Stoohastic Navier Stokes 2-D poriodic (L L, = 104,210

Order parameter : z; = [ dxdy exp(iy)o (x,y).
For unidirectional flows |z;| ~ 0, for dipoles |z;| ~ 0.6 — 0.7

F. Bouchet and E. Simonnet, PRL, 2009.
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Numerical computation of rare events

Most Probable Transitions (Instantons) for the 2D

Navier-Stokes Eq.
With J. Laurie

@ Large deviation theory: instantons as minimum action paths.
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2D Navier-Stokes equations Numerical instanton (time of
(time: 10 000) (PRL) order 1) (J. Stat. Phys.)

J. Laurie and F. Bouchet, Computation of rare transitions in the
barotropic quasi-geostrophic equations, New J. Phys., 2014
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© Numerical computation of rare events

@ Adaptive multilevel splitting: an example of rare event
algorithm based on selection and cloning
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Rare Events and Adaptive Multilevel Splitting

AMS: an algorithm to compute rare events, for instance rare reactive trajectories

Probability estimate:

Observable : & :R? — R

(b) Dy Dy <Dy < Dy
b, 3 2 < B3

o % N = 3 clones & = H P(/k7 lkJrl)

9 with P(/k,/k+1):(1—1/N)

I’: 1 branched on 2

AMS algorithm

F. Cérou, A. Guyader. (2007) F. Cérou, A.Guyader, T. Leliévre, and D.
Pommier (2011).

Eric Simonnet will use this algorithm to compute rare transition for
quasi-geostrophic zonal jets similar to Jupiter jets.
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Sampling Extreme Heat Waves using Large Deviation
Algorithms (with J. Wouters and F. Ragone)

2010 Heat Wave over Eastern Europe (Dole and col., 2011)

@ Computing the dynamical paths leading to extreme heat waves
through rare event algorithms.

@ We use the Planet Simulator (PlaSim) model (an Earth system
model of intermediate complexity).
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GFD Problems Solved using Large Deviation Theory

Few more papers using large deviation theory and/or rare event
algorithms in a Geophysical Fluid Dynamics context:

@ P. H. Haynes and J. Vanneste, Dispersion in the
large-deviation regime. Part 1: shear flows and periodic flows,
J. Fluid Mech., 2014.

@ P. H. Haynes and J. Vanneste, Dispersion in the
large-deviation regime. Part 2: cellular flows at large Péclet
number, J. Fluid Mech., 2014.

@ J. G. Esler, Adaptive stochastic trajectory modeling in the
chaotic advection regime, JFM, in press.

@ F. Bouchet, and A. Venaille, Statistical mechanics of
two-dimensional and geophysical flows, Physics Reports, 2012.

@ F. Bouchet, J. Laurie and O. Zaboronsky, Langevin dynamics,
large deviations and instantons for the quasi-geostrophic
model,J. Stat. Phys., 2014.
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Summary and Perspectives

@ Large deviation theory can be applied to geophysical
turbulence.

@ The dynamics leading to rare events is usually predictable,
even for turbulent flows.

@ With rare event algorithms, we can compute probability of rare
events that can not be sampled using direct numerical
simulations.

@ This is a promising field that will help answering scientific
issues that can not be adressed using classical theoretical or
numerical tools.
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