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Sea surface temperature (SST) variability

Deser et al., Ann. Rev. Mar. Sc. (2010)
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Patterns of variability: 
El Nino/Southern Oscillation (ENSO)
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Patterns of variability: 
Atlantic Multidecadal Variability (AMV)

Deser et al., Ann. Rev. Mar. Sc. (2010)
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AMV: spectra
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Main questions

Which processes determine the time scales and spatial 
patterns of these climate variability phenomena? 

How does this variability interact with the background 
(e.g. longer time mean) climate state? 

Ex:  What will be the change in ENSO behavior 
under global warming?

   Ex:  Why is the pattern of ENSO localized in the eastern Pacific and 
what sets its amplitude?

Ex:  How does ENSO affect the global mean surface temperature?



Intrinsic Variability

External (to Earth) forcing
(diurnal, seasonal, astronomical)

Reduction of state vector: 

`Forcing’ Representation
of unresolved processes

Intrinsic/internal variability:  arises spontaneously through instabilities
 
Natural variability:  combined variability due to external forcing and 
                               instabilities (without the anthropogenic `forcing’) 
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Abraham, R. H. and Shaw, C. D., 
Dynamics, the Geometry of Behavior,  

(1988)

Dynamical systems approach

The Taylor-Couette Flow The Rayleigh-Benard Flow 

�T = TB � TA



Taylor vortices wavy vortices

Transition behavior   

Taylor vortices Wavy vortices



Geometry of motion! 
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Dynamical systems theory   

Steady --> Periodic --> Quasi-periodic --> … --> Irregular (Chaotic) … -> Turbulent

Bifurcation Theory Ergodic theory
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Multiple turbulent states   

Huisman et al, Nature Comm, (2014)
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High-resolution 
ocean/atmosphere models

Energy Balance 
Models

IPCC-AR4 Global 
Climate Models

Conceptual Models
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Earth System Models of 
Intermediate Complexity 
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Application to Climate Variability

‘Minimal’ Model: 
‘just enough’ processes to capture phenomenon under study



Stochastic dynamical systems approach    

Hierarchy of 
models

Behavior (statistics) 
over the  

full parameter  
space

Geometrical  
view of motion

Dynamical system



Concepts/techniques
A. Bifurcation Theory

elementary transitions (pitchfork, saddle node, transcritical, Hopf)
normal modes (instability mechanisms), global bifurcations  
transition to chaos, inertial manifolds, synchronization

B. Ergodic Theory
long time behavior of ensembles of trajectories

invariant measures, transfer operators 
evolution of correlations 



Elementary transitions (co-dim 1 bifurcations)
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Hopf bifurcation (flutter)



Example 1: bifurcation theory 
Ocean western boundary current variability

RMS of sea surface height (SSH) variability

Kuroshio
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Kuroshio path: 1993-2004 

Bi-weekly mean Kuroshio path from 
altimetry (170 cm sea level contour) Qiu and Chen, JPO, 2005

Interannual-decadal  
time scale 

transitions between  
different  

Kuroshio paths. 



SSH metrics 
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 A ‘minimal’ model

hh

20 km resolution d ~ 500,000

 reduced gravity shallow-water model

control parameter:
`lateral friction’

steady wind stress



Model-Data comparison: SSH metrics

time (year)

Pierini et al., JPO, (2009)
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Lateral mixing variation: transition behavior!
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Bifurcation diagram 
Quasi-geostrophic (QG) barotropic model
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Bifurcation diagram QG-model: 
schematic  

Simonnet et al.,  JMR, (2005)

Computational 
techniques:  

Pseudo-arclength 
continuation



Symmetry breaking: 
shear instability at first pitchfork

Steady state 
at pitchfork

Normal (P) mode  
at Pitchfork 

Streamfunction Vorticity



Details: Derive low-order Model

+ Galerkin projection  gives:

�µ�

x � [0, �], y � [0, �]

Choose wind-stress strength as 
control parameter

Simonnet et al.,  JMR, (2005)



Results: Low-order model 
 Wind-stress  
amplitude
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Wind-stress noise in low-order model 

Chekroun, Simonnet, Ghil  Physica D, (2008)

Computation of  
sample measures

single noise  
realization

SDE



Results: sample measure
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Effects of noise in the wind-stress forcing  
on intrinsic variability in PDE models?

1. Local PDF through linearized dynamics

2. Dynamical Orthogonal Field theory

3. Non-Markovian model reduction techniques

Sapsis and Lermusiaux, Physica D, (2009)

Kuehn, SIAM J. Sci. Comp., (2012)

Chekroun et al., Springer, (2015)

Sapsis and Majda, Physica D, (2013)



Dynamically Orthogonal Field Equations, I

Sapsis and Lermusiaux, Physica D, (2009)
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General  
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Dynamically Orthogonal Field Equations, II

s + 1 deterministic PDEs 

system of s SDEs (solve with ensemble size n) 



Typical results: double-gyre flow

Red noise wind stress can easily excite  
variability in stable deterministic systems

Sapsis and Dijkstra, JPO, (2013)

s = 4

Re



Minimal model:  
Effect of additive noise in the wind stress

Pierini, JPO, (2009)

⌧(x, y, t) = (1 + ✏⇣(t))⌧0(x, y)

red noise, decorrelation time 1 yr

no excitation 
for white noise!



Summary Example 1: bifurcation theory 
Ocean western boundary current variability

Internal variability of the barotropic 
wind-driven ocean circulation arises 

through internal (gyre) modes of 
variability and/or global bifurcations 

Temporal correlations in the noise of the 
wind-stress forcing excite low-frequency 

internal variability



… but there are more relevant processes

Baroclinic instability and the effect
of (meso-scale) eddies

The effect  of sea surface 
temperature anomalies on

 wind-stress anomalies 

These have not been included yet into the dynamical 
systems picture 

Berloff et al., JPO, (2007)

`Turbulent oscillator’

Wind stress anomalies over the Pacific  
are well correlated  with Kuroshio induced SSH  

(and temperature) variations

Qiu et al., J Clim, (2014)

The effect of an external 
time-dependent 

wind stress (and Rossby waves)

An external (decadal varying)  
wind forcing modulates the internal variability 

Pierini, J Clim, (2014)



Example 2: 
Midlatitude Atmospheric Flow Transitions

Problem: 
Develop an early warning indicator for a transition 

from zonal to a  blocked state
Tantet et al., Chaos, (2015)



Minimal model



Variability

Crommelin,  JAS, (2003) Many unstable fixed points



Reduced dynamics

Recurrent meta-stable
regimes 



Transfer operator of reduced dynamics

fn fn+τL



Estimation of the transfer operator



Spectral properties



Almost invariant sets: results

Optimal almost invariants: optimal Markov chain reduction 
(Deng et al.,IEEE Autom. Control, (2011)).



Early warning indicator?

Alarm for p_c = 0.3



Skill of the indicator

tolerance



Summary example 2



Overall summary

1. Behavior involving  `low-dimensional’ attractors

Dynamical systems approach

- Local bifurcation theory
- Global bifurcations

- Model hierarchy
- Concepts/techniques

1I. Behavior involving `high-dimensional’ attractors

- Transfer operator techniques
- Markovian approximations


