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Bi-Stability in fluid dynamics
Kuroshio stream

Bistability in Ocean current1

1M. J. Schmeits, H. A. Dijkstra, J. Phys. Ocean. 31, 3435 (2001).
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Bi-Stability in fluid dynamics
Multistability of atmosphere jets

Multiple attractors for atmospheric jet configurations2

Identical flow parameters, different forcing realizations
⇒ different stable zonal jet configurations3.

2J. B. Parker, J. A. Krommes, New Journal of Physics 16, 035006 (2014).
3B. F. Farrell, P. J. Ioannou, J. Atmos. Sci. 60, 2101 (2003), B. F. Farrell, P. J. Ioannou, J. Atmos. Sci. 64, 3652 (2007).
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Extreme events in fluids
Rogue waves

Rogue waves: Probability density function unknown (but more probable than Gaussian)
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Extreme events in fluids
Singular events and relation to turbulence
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Instanton calculus and large deviations
Definitions

Consider the S(P)DE

dXt = b(Xt )dt + σdWt

with

Xt random process with t ∈ [−T , 0], finite or infinite dimensional

b(Xt ) drift term (possibly non-gradient, possibly non-linear)

Wiener process dWt with diffusion matrix a = σσ†.

Large deviations theory:4

Let Xε(t), t ∈ [−T , 0] be a family of random processes, where the forcing vanishes with
ε→ 0 according to σ =

√
ε. Then

P {Xε(0) ∈ B} � exp
(
−

1
ε

inf
ψ
IT [ψ]

)
for the rate function IT [ψ].

4A. Dembo, O. Zeitouni, Large deviations techniques and applications, (Springer-Verlag, Berlin, 2010).
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Freidlin-Wentzell theory
Large deviations for SDEs

For the SDE above,

IT [X ] =
1
2

0∫
−T

L(X , Ẋ) dt, L(X , Ẋ) = 〈Ẋ − b,a−1(Ẋ − b)〉

termed Freidlin-Wentzell action functional5.
Find the minimum action e.g. via Euler-Lagrange equation

∂L
∂Ẋ

= a−1(Ẋ − b) ≡ P

∂L
∂X

= (∇b)T a−1(Ẋ − b) = −(∇b)T P

yields Hamilton’s equations of motion

Ẋ = aP + b

Ṗ = −(∇b)T P

The minimizer (X̃ , P̃) with δIT [X ] = 0 is called the instanton.
5M. I. Freidlin, A. D. Wentzell, Random perturbations of dynamical systems, (Springer, 1998).
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Boundary conditions
Transition probabilities versus final time observable
Initial and final state of the trajectory are known:

X(−T ) = Xstart
X(0) = Xend

(e.g. Bi-stability, reaction paths, phase transitions)

Modifies the equations of motion

Ẋ = aP + b

Ṗ = −(∇b)T P + λ(∇F [X ])δ(t)

i.e. observable at final time⇒ final condition for the momentum P!

Solving these equations gives us

Complete final configuration, fulfilling the given constraint

Most probable evolution in time from initial state into this final configuration

Corresponding optimal force (computable from auxiliary field P)

Tail scaling behavior of the PDF of our observable
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Boundary conditions
Transition probabilities versus final time observable
Initial and final state of the trajectory are known:
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Burgers Turbulence

Burgers turbulence is considered a
simple model of natural turbulence

ut + uux − νuxx = η

Turbulent fields consist of
smooth regions and shocks

Exhibits strong intermittency

Velocity gradient statistics are
very skewed

Instantons have been applied to explore turbulent Burgers statistics.6,7,8

Goal: Use above method to analyze typical evolution of strong shocks (and deduce
scaling of velocity gradient PDF tails)

6V. Gurarie, A. Migdal, Phys. Rev. E 54, 4908 (1996).
7E. Balkovsky, G. Falkovich, I. Kolokolov, V. Lebedev, Phys. Rev. Lett. 78, 1452 (1997).
8A. I. Chernykh, M. G. Stepanov, Phys. Rev. E 64, 026306 (2001).
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Burgers shocks
Instantons for Burgers turbulence

Application of Instanton formalism to Burgers turbulence9

Evolution of Burgers shocks:

b(u) = −uux + νuxx

F [u] = ux (0, 0)

This means:

ut + uux − νuxx = η

Question: What is the most likely
evolution from u(x)=0 at t =−∞,
such that at the end (i.e. t = 0) we
have a high gradient in the origin
ux (x =0, t =0)=z (shock)?

9T. Grafke, R. Grauer, T. Schäfer, J. Phys. A 46, 62002 (2013).
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Burgers turbulence
Extreme events versus instantons
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PDF tail scaling
Instanton predictions for the probability of rare events

From large deviations we know:

P{F [X(t = 0)] ∈ B} ∼ exp(−I[Xinst])

Knowledge of the instanton implies knowledge of the PDF tails.

Assuming a specific form of the PDF for velocity gradient ux = z:

P(z) ∼ exp(−|z|ϑ) ⇒ I[Xinst] ∼ |z|ϑ

yields10,11:

Left tail (shocks):

lim
ux→−∞

ϑ = 3
2

Right tail (rarefaction waves):

lim
ux→∞

ϑ = 3

But: measured left tail more like12 ϑ = 1.15 6= 3
2

10V. Gurarie, A. Migdal, Phys. Rev. E 54, 4908 (1996).
11E. Balkovsky, G. Falkovich, I. Kolokolov, V. Lebedev, Phys. Rev. Lett. 78, 1452 (1997).
12T. Gotoh, Phys. Fluids 11, 2143–2148 (1999).
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PDF tail scaling
Burgers instantons versus DNS
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PDF tail scaling
Burgers instantons versus DNS
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PDF tail scaling
Burgers instantons versus DNS
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Instanton for the 3D Navier-Stokes equations
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Instanton for the 3D Navier-Stokes equations
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Instanton for the 3D Navier-Stokes equations
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Instanton for the 3D Navier-Stokes equations
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Conclusion

In general

we are able to compute the instanton for the evolution from field at rest to arbitrary
final states.

we can use the instanton configuration to make quantitative predictions about the
statistics of rare events.

For Burgers equation:

We can recover the instanton configuration in stochastic Burgers flows.

We can exlain the discrepancy between measurements in DNS and analytical
estimates from the instanton approach.

We can predict the PDF for a wide range of Reynolds numbers.

For other equations:

Similar treatment of actual turbulence in 2D or 3D is in reach.
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Numerical Computation of Instanton configuration

We want to solve the instanton equations numerically! Problems:

Starting from a stable fixed point of the deterministic dynamics:

T →∞

How to discretize?

Solution: Minimize on space of arc-length parametrized curves, ‖ẋ‖a = 1,
(geometric instanton13,14)

Fluid dynamics (esp. Turbulence): Large number of degrees of freedom.

E.g. 2D fluid, space resolution 1024× 1024, number of timesteps ≈ 104

=⇒ N ≈ 1010 (!)

Solution: Various optimizations (Equations of motion, Multigrid-like recursive time
integration, compact support of correlation for large scale forcing, GPUs)15

13M. Heymann, E. Vanden-Eijnden, Commun. Pure Appl. Math. 61, 1053 (2008).
14T. Grafke, R. Grauer, T. Schäfer, E. Vanden-Eijnden, Multiscale Modeling & Simulation 12, 566–580 (2014).
15T. Grafke, R. Grauer, S. Schindel, arXiv:1410.6331 [physics.flu-dyn], arXiv: 1410.6331 (Oct. 2014).
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