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Bi-Stability in fluid dynamics

Kuroshio stream

Bistability in Ocean current!
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M. J. Schmeits, H. A. Dijkstra, J. Phys. Ocean. 31, 3435 (2001).
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Bi-Stability in fluid dynamics

Multistability of atmosphere jets

Multiple attractors for atmospheric jet configurations?
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Identical flow parameters, different forcing realizations
= different stable zonal jet configurations3.

2).B. Parker, J. A. Krommes, New Journal of Physics 16, 035006 (2014).
3B. F. Farrell, P. J. loannou, J. Atmos. Sci. 60, 2101 (2003), B. F. Farrell, P. J. loannou, J. Atmos. Sci. 64, 3652 (2007).
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Extreme events in fluids

Rogue waves

Rogue waves: Probability density function unknown (but more probable than Gaussian)
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Extreme events in fluids

Singular events and relation to turbulence

Clay Mathematics Institute

Dedicated to increasing and disseminating mathematical knowledge

HOME ABOUT CMI FR ms VENTS 3, PUBLIC

+ Birch and Swinnerton-Dyer
Conjecture

+ Hodge Conjecture

+ Navier-Stokes Equations
rPus NP

+ Poincaré Conjecturs

+ Riemann Hypothesis
FYang-Mills Theory

Millennium Problems

In order to celebrate mathematics in the new millennium, The Clay Mathematics Institute
of Cambridge, Massachusetts (CMI) has named seven Prize Problems. The Scientific

that have resisted solution over the years. The Board of Directors of CMI desi
F7 million prize fund for the solution to these problems, with $1 million alloca
Curing the Millennium Meeting held on May 24, 2000 at the Colleége de Fragte, Timothy
Gowers presented a lecture entitled The Importance of Mathematics, aimed for the general

public, while John Tate and Michael Atiyah spoke on the problems. The CMI invited + Rules
specialists to formulate each problem. F Millennium Meeting Videos

One hundred years earlier, on August 8, 1900, David Hilbert delivered his famous
lecture about open mathematical problems at the second International Congress of
Mathematicians in Paris. This influenced our decision to announce the millennium
problems as the central theme of a Paris meeting.

The rules for the award of the prize have the endorsement of the CMI Scientific Advisory
Board and the approval of the Directors. The members of these boards have the
responsibility to preserve the nature, the integrity, and the spirit of this prize.

Paris, May 24, 2000

Please send inquiries regarding the Millennium Prize Problems to
rize problems@claymath org
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Instanton calculus and large deviations

Definitions
Consider the S(P)DE

dX; = b(X;)dt + odW;
with

= X; random process with t € [T, 0], finite or infinite dimensional
= p(X;) drift term (possibly non-gradient, possibly non-linear)

= Wiener process dW; with diffusion matrix a = o',

Large deviations theory:*

Let X¢(1)., f € [-T,0] be a family of random processes, where the forcing vanishes with
¢ — 0 according fo ¢ = \/e. Then

P{X(0) € B} < exp (—% irJ)fIT[w])
for the rate function Z;[v].

4A. Dembo, O. Zeitouni, Large deviations techniques and applications, (Springer-Verlag, Berlin, 2010).
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Freidlin-Wenftzell theory

Large deviations for SDEs

For the SDE above,
0
X] = % / LOGK) O, LK) = (X —b,a~ (X — b))
-7
termed Freidlin-Wentzell action functional®.
Find the minimum action e.g. via Euler-Lagrange equation

g—f( =a 'X=-b)=P
%f( = (vb)a (X —b) = —(Vb)'P

yields Hamilton’s equations of motion

X=aP+b
P=—(vb)'P

The minimizer (X, P) with 6Z;[X] = 0 is called the instanton.

5M. I. Freidlin, A. D. Wentzell, Random perturbations of dynamical systems, (Springer, 1998).
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Boundary conditions
Transition probabilities versus final time observable
Initial and final state of the trajectory are known:

X(*T) = Xstart
X(O) = Xond

(e.g. Bi-stability, reaction paths, phase transitions)
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Boundary conditions
Transition probabilities versus final time observable

Initial ereHinet state of the trajectory are known:

X(*T) = Xstart
X(0) =272

(e.g. Exit fimes, rogue waves, extreme events)

But: we want to measure some observable O[X] = §(F[X(0)] — a)
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Boundary conditions

Transition probabilities versus final time observable

Initial ereHinet state of the trajectory are known:

X(=T) = Xstart
X(0) =777
(e.g. Exit fimes, rogue waves, extreme events)
But: we want to measure some observable O[X] = §(F[X(0)] — a)
Modifies the equations of motion

X=aP+b
P = —(VB) P+ X(VF[X])s(t)

i.e. observable at final fime = final condition for the momentum P!
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Boundary conditions
Transition probabilities versus final time observable

Initial ereHinet state of the trajectory are known:

X(=T) = Xstart
X(0) =777
(e.g. Exit fimes, rogue waves, extreme events)
But: we want to measure some observable O[X] = §(F[X(0)] — a)
Modifies the equations of motion

X=aP+b
P = —(Vb) P + A(VFX])8(1)
i.e. observable at final fime = final condition for the momentum P!

Solving these equations gives us
= Complete final configuration, fulfilling the given constraint
= Most probable evolution in time from initial state into this final configuration
= Corresponding optimal force (computable from auxiliary field P)

= Tail scaling behavior of the PDF of our observable
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Burgers Turbulence

Burgers turbulence is considered a
simple model of natural turbulence

Ut +UUx —vUxx =1

= Turbulent fields consist of
smooth regions and shocks

= Exhibits strong intermittency

= Velocity gradient statistics are
very skewed

Instantons have been applied to explore turbulent Burgers statistics.®-7 8

Goal: Use above method to analyze typical evolution of strong shocks (and deduce
scaling of velocity gradient PDF tails)

V. Gurarie, A. Migdal, Phys. Rev. E 54, 4908 (1996).
7. Balkovsky, G. Falkovich, I. Kolokolov, V. Lebedev, Phys. Rev. Lett. 78, 1452 (1997).
BA. I Chernykh, M. G. Stepanov, Phys. Rev. E 64, 026306 (2001).
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Burgers shocks

Instantons for Burgers furbulence
Application of Instanton formalism to Burgers turbulence?
Evolution of Burgers shocks:

b(u) = —uUx + vUxx
Flu] = ux(0,0)

1. Grafke, R. Grauer, T. Schéfer, J. Phys. A 46, 62002 (2013).
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Burgers shocks

Instantons for Burgers furbulence

Application of Instanton formalism to Burgers turbulence?

Evolution of Burgers shocks:

b(u) = —uUx + vUxx
Flu] = ux(0,0)

This means:

Up +UUx —vlUxx =1

Question: What is the most likely
evolution from u(x)=0at f=—o0,
such that at the end (.e. t = 0) we
have a high gradient in the origin
ux(x=0,1t=0)=2z (shock)?

1. Grafke, R. Grauer, T. Schéfer, J. Phys. A 46, 62002 (2013).
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Burgers shocks
Instantons for Burgers furbulence
Application of Instanton formalism to Burgers turbulence?

Instanton (¢ = 0)
10

Evolution of Burgers shocks:

et /

This means: I

U + UUx — vUyx = 1 pd

Question: What is the most likely /
evolution from u(x)=0 at f=—oo, N

such that at the end (i.e. t = 0) we /
have a high gradient in the origin
ux(x=0,1t=0)=2z (shock)?

91, Grafke, R. Grauer, T. Schéfer, J. Phys. A 46, 62002 (2013).
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Burgers turbulence

Extreme events versus instantons

Instanton Average event
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PDF tail scaling

Instanton predictions for the probability of rare events

From large deviations we know:

P{FIX(t = 0)] € B} ~ exp(—T[Xinst])

Knowledge of the instanton implies knowledge of the PDF tails.

10V, Gurarie, A. Migdal, Phys. Rev. E 54, 4908 (1996).
g, Balkovsky, G. Falkovich, I. Kolokolov, V. Lebedev, Phys. Rev. Lett. 78, 1452 (1997).
127, Gotoh, Phys. Fluids 11, 2143-2148 (1999).
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PDF tail scaling

Instanton predictions for the probability of rare events

From large deviations we know:

PLFIX(t = 0)] € B} ~ exp(—Z[Xinst])
Knowledge of the instanton implies knowledge of the PDF tails.
Assuming a specific form of the PDF for velocity gradient uy = z:

P@)~exp(-lz”) = Il ~12°

yields!0-11:
Left tail (shocks): Right tail (rarefaction waves):
im o=3 im =3
Uy ——o00 Uy —0o0

10V, Gurarie, A. Migdal, Phys. Rev. E 54, 4908 (1996).
g, Balkovsky, G. Falkovich, I. Kolokolov, V. Lebedev, Phys. Rev. Lett. 78, 1452 (1997).
127, Gotoh, Phys. Fluids 11, 2143-2148 (1999).
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PDF tail scaling

Instanton predictions for the probability of rare events

From large deviations we know:

PLFIX(t = 0)] € B} ~ exp(—Z[Xinst])
Knowledge of the instanton implies knowledge of the PDF tails.
Assuming a specific form of the PDF for velocity gradient uy = z:

P@)~exp(-lz”) = Il ~12°

yields!0-11:
Left tail (shocks): Right tail (rarefaction waves):
im o=3 im =3
Uy ——o00 Uy —0o0

But: measured left tail more like'2 ¥ = 1.15 # %

10V, Gurarie, A. Migdal, Phys. Rev. E 54, 4908 (1996).
g, Balkovsky, G. Falkovich, I. Kolokolov, V. Lebedev, Phys. Rev. Lett. 78, 1452 (1997).
127, Gotoh, Phys. Fluids 11, 2143-2148 (1999).
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PDF tail scaling

Buraers instantons versus DNS
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PDF tail scaling

Buraers instantons versus DNS
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PDF tail scaling

Burgers instantons versus DNS
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from T. Grafke, R. Grauer, T. Schéfer, E. Vanden-Eijnden, EPL 109, 34003 (2015)
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Instanton for the 3D Navier-Stokes equations

omvector Magnitude

1.637e-04
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Instanton for the 3D Navier-Stokes equations

Instanton, w, Average event, w,

00 02 04 06 08 10 00 02 04 06 08 1.0
T r
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Instanton for the 3D Navier-Stokes equations

Instanton, wy Average event, wy
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Instanton for the 3D Navier-Stokes equations

Instanton, w, Average event, w,
T T T T T T T

~-0.4
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r T
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Conclusion

In general

= we are able to compute the instanton for the evolution from field at rest to arbitrary
final states.

= we can use the instanton configuration to make quantitative predictions about the
statistics of rare events.

For Burgers equation:
= \We can recover the instanton configuration in stochastic Burgers flows.

= \We can exlain the discrepancy between measurements in DNS and analytical
estimates from the instanton approach.

= We can predict the PDF for a wide range of Reynolds numbers.
For other equations:

= Similar freatment of actual turbulence in 2D or 3D is in reach.
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Numerical Computation of Instanton configuration
We want to solve the instanton equations numerically! Problems:

= Starting from a stable fixed point of the deterministic dynamics:
T — o
How to discretize?

Solution: Minimize on space of arc-length parametrized curves,
(geometric instanton!314)

fllo =1,

= Fluid dynamics (esp. Turbulence): Large number of degrees of freedom.

E.g. 2D fluid, space resolution 1024 x 1024, number of timesteps ~ 104

— N~109

Solution: Various optimizations (Equations of motion, Multigrid-like recursive time
integration, compact support of correlation for large scale forcing, GPUs)'®

B, Heymann, E. Vanden-Eijnden, Commun. Pure Appl. Math. 61, 1053 (2008).
147, Grafke, R. Grauer, T. Schéfer, E. Vanden-Ejnden, Mulfiscale Modeling & Simulation 12, 566-580 (2014).
157, Grafke, R. Grauer, S. Schindel, arXiv:1410.6331 (physics.flu-dyn), arXiv: 1410.6331 (Oct. 2014).
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