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Constraints on circulation and precipitation

changes with global warming

CMIP5 models predict an increase in precipitation and a

weakening of the time-mean mass flux with global warming.
[Held and Soden, 2006; Vecchi and Soden, 2007]

Stationary circulations in the subtropics (monsoon flows) and
deep tropics (Walker cell) weakens with global warming

faster than the zonal-mean circulation (Hadley cells). [Vecchi et
at., 2006; Douville et al.,2002; Tanaka et al., 2004; Ueda et al., 2006; Cherchi et
al., 2011; Ma et Yu, 2014]

Precipitation and circulation are constrained globally, but no
comprehensive theory describes local changes or changes in

one of their component Se.g., zonal-mean or stationary).
[Mitchell et al., 1987; Knutson and Manabe, 1995; Allen and Ingram, 2002;
O’Gorman and Schneider, 2008; Schneider et al., 2010; O’Gorman et al., 2012]



Setting description:
“Gill-like” forcing

Global warming experiment with idealized GCM (T85, 30 levels)
[O’Gorman and Schneider, 2008]

Surface conditions: Slab ocean, uniform thermal inertia and

albedo
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Global warming: Longwave optical depth is varied globally,

mimicking increase or decrease in GHG concentration



Hydrologic imbalance

Hydrologic Imbalance [mm day]
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Contours: P-E < -1.5 mm day! in cold (Ts=291K, cyan), reference
(Ts=302K, green) and warm (Ts=311K, magenta) climates

Wet zones near heating zone, enhanced dryness to the west.



Zonally asymmetric precipitation

Stationary Precipitation [mm day']
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Wet zones near heating zone, dryness to the west.



Stationary vertical wind

Stationary Vertical Wind [ 108 s°1]
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Hydrologic pattern largely consistent with stationary wind



Stationary vertical wind

Stationary Vertical Wind [ 108 5]
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Hydrologic pattern largely consistent with stationary wind



Vertical profile of stationary updraft
with global warming

Global Stationary Vertical Wind
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Troposphere deepens with global warming
Stationary circulation is non-monotonic with global warming



A modal decomposition

« The dynamics in the free troposphere
depends on the sensitivity of the dynamics
to a subcloud temperature anomaly, and the

magnitude of the subcloud-layer
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Sensitivity of vertical winds to
temperature anomalies
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Low-level temperature anomalies are communicated to troposphere by
convection

Convective adjustment process is uniform across tropics
Vertical Wind Mode
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Sensitivity of vertical winds to
temperature anomalies
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Vertical wind mode strengthens with global warming:
i.e., winds become more sensitive to LCL temperature
anomalies in warm than in cold climates



Thermal forcing on the vertical winds
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We assume friction-less Sverdrup balance in the lower troposphere.

Global stationary vertical wind coefficient
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Thermal forcing on the vertical winds
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Global stationary vertical wind coefficient
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Vertical wind coefficient decreases, consistent with a weakening of the zonal
temperature gradient



Strength of stationary circulation from
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Modal expression captures the behavior of the stationary

circiilation



Strength of stationary circulation
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Global stationary vertical wind maximum from 1st BC mode

004 —— bc)max r fZ '}’()]'(]u .

— Bo /fo [(V )bc]max
_"_Qmax Qo J aT 95

260 280 300 320
Mean Surface Temperature [K]
Stationary circulation changes with global warming can be described by a

scaling that depends only on radiative-convective properties of the
atmosphere



A mechanism for non-monotonicity in
strength of stationary circulation

Contributions to global stationary vertical wind changes
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Non-monotonic behavior arises from dynamics being more
sensitive to subcloud temperature anomalies, and subcloud
temperature anomalies weakening with global warming



Summary (1)

We simulate a stationary circulation in an
idealized moist GCM with a heat patch

Stationary circulation varies non-monotonically
with global warming.

Stationary circulation is non-monotonic because
dynamics becomes more sensitive to
temperature anomalies with global warming,
but temperature anomalies weakens with global
warming.

We have formalized this behavior using a modal
decomposition, and relating changes to
fundamental properties of the tropical
atmosphere.



Stationary precipitation
P = / Pt (PF) det

Global stationary precipitation from vertical wind
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Stationary precipitation changes with global warming are captured

by changes in stationary circulation and zonal-mean moisture



Area of dry zones
oy = / H(—P —Py) det

Area of negative stationary precipitation
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Assuming a climate-invariant ratio of updraft and downdraft in the
troposphere provides a simple explanation for the expansion of dry zones
with global warming, which is found to scale with global changes in
precipitation



Summary (2)

« Changes in stationary precipitation are captured
when combining non-monotonicity of stationary
circulation and steady increase of tropospheric
moisture.

* Dry zones, as defined by regions of negative
stationary precipitation, generally expand with
global warming.

» Expansion of dry zones is captured by global
changes in precipitation, assuming invariance in
areas covered by time-mean subsidence and
upwelling.



