Direct Statistical Simulation of Geophysical Flows: Taming the Curse of Dimensionality

"An alternative procedure which does not suffer this disadvantage consists of deriving a new system of equations whose unknowns are the statistics themselves...."

Edward Lorenz, The Nature and Theory of the General Circulation of the Atmosphere (1967)

"Direct Statistical Simulation" (DSS)

DSS vs. DNS

Low-order statistics are smoother in space than the instantaneous flow.

Statistics evolve slowly in time, or not at all, and hence may be described by a fixed point, or at least a slow manifold.

Correlations are *non-local* and highly anisotropic and inhomogeneous. Statistical formulations should respect this.

JBM, W. Qi, and S. M. Tobias, "Direct Statistical Simulation of a Jet" arXiv:1412.0381 (CE2, CE2.5 and CE3). "GCM" on the Apple Mac App Store (2000+ downloads)

Kill Three Birds With One Stone?

1. Address systems that lack zonal symmetry.

 Seamlessly integrate sub-grid physics (eg. turbulence, convection, clouds, sub-mesoscale eddies) into GCMs.

3. Greatly increase speed and resolution.

Large-Eddy-Simulation (LES) of Dry Boundary Layer (fully nonlinear and QL) See poster "Non-local second order closure scheme for boundary layer turbulence" by Bettina Meyer and Tapio Schneider

Large-Eddy-Simulation (LES) of Dry Boundary Layer (fully nonlinear and QL) Bettina Meyer & Tapio Schneider (ETH Zurich)

GQL = Generalized Quasilinear DNS

Barotropic Toy Model of Jets

$$\partial_t \zeta + \vec{v} \cdot \vec{\nabla}(\zeta + f) = -\kappa \zeta - \nu_2 \nabla^4 \zeta + \eta$$

 $\zeta = \hat{r} \cdot \vec{\nabla} \times \vec{v} \qquad \qquad f = 2\Omega \sin(\phi)$

 $\zeta(\theta,\phi) = \sum^{L} \sum^{\ell} \zeta_{\ell,m} Y_{\ell}^{m}(\theta,\phi)$ $\ell = 0 m = -\ell$

Vorticity Power Spectra

Two-Point Vorticity Correlations

Generalized 2nd Order Cumulant Expansion (GCE2)

$$\frac{\partial}{\partial t}q = L[q] + Q[q, q]$$

 $q = \ell + h$

$$\begin{split} &\frac{\partial}{\partial t}\ell = Q[\ell, \ \ell] + Q[(h, \ h)] & \frac{\partial}{\partial t}h = Q[\ell, \ h] \\ &\frac{\partial}{\partial t}(h \ h) = 2Q[\ell, \ (h] \ h) & \text{Closure} \end{split}$$

Malecha, Chini, and Julien, J. Comp. Phys. (2013); Bakas and Ioannou, PRL **110**, 224501 (2013)

Two-layer primitive equations: Relaxation to a prescribed equator-to-pole temperature difference

Two-Point Vorticity Correlations

 $\Lambda = 12$ "Truth"

 $\Lambda = 0$

 $\Lambda = 3$

(Courtesy F. Sabou)

A Systematic Approximation Exact in $\Lambda \to \infty$ limit and often accurate for $\Lambda = 3$

A Conservative Approximation

GCE2 conserves total angular momentum, energy, and enstrophy in absence of forcing and damping.

Realizable

GCE2 = Closed under selected triads = Realizable

Seamless

But: Slow Curse of Dimensionality

The "Curse of Dimensionality" — How to Address?

 $c(\vec{r}_1, \vec{r}_2) \equiv \langle h(\vec{r}_1)h(\vec{r}_2) \rangle$

 $c(\vec{r}_1, \vec{r}_2) = \sum_i \lambda_i \ \phi_i(\vec{r}_1) \ \phi_i(\vec{r}_2) \quad \text{Schmidt decomposition}$ $\approx \sum_{i=1}^N \lambda_i \ \phi_i(\vec{r}_1) \ \phi_i(\vec{r}_2)$

Entanglement: More than one non-zero eigenvalue

2-Layer Baroclinic QG Model

Latitude

How to Update the Retained Basis Dynamically?

Density-Matrix Renormalization-Group (DMRG)

end of infinite DMRG	block S	2 sites	block E	
environment growth	(retrieved)	00		$\dim(\mathcal{H}) = 2^N$
system size minimal				$\operatorname{diff}(7\mathbf{c}) = 2$
system growth		(retrieved)		
end of finite DMRG		00		

Daley, Kollath, Schollwöck and Vidal (2012)

How to Update the Retained Basis Dynamically?

Sabou, Boddington, JBM (2012)

Open Questions

- How to dynamically adapt basis?
- Filter in real space, wavenumber space, or something else?

Thanks:

Grad Students Altan Allawala Ookie Ma Bettina Meyer (Tapio) Wanming Qi Florian Sabou Joe Skitka Tomás Tangerife (Freddy)

Undergrads Emily Conover Katie Dagon Tom Iadecola Abby Plummer Will Strecker-Kellogg Postdocs Bernd Braunecker Farid Ait-Chaalal

Collaborators Freddy Bouchet (ENS Lyon) James Cho (Queen Mary) David Dritschel (St. Andrews) Baylor Fox-Kemper (Brown) Paul Kushner (Toronto) Tapio Schneider (ETH) Steve Tobias (Leeds) Antoine Venaille (ENS Lyon)