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"An alternative procedure which does not suffer this 
disadvantage consists of deriving a new system of 
equations whose unknowns are the statistics 
themselves...."

Edward Lorenz, The Nature and Theory of the General Circulation of the 
Atmosphere (1967)

“Direct Statistical Simulation” (DSS)



Low-order statistics are smoother in 
space than the instantaneous flow.  

Statistics evolve slowly in time, or not at 
all, and hence may be described by a 
fixed point, or at least a slow manifold.

DSS vs. DNS

Correlations are non-local and highly 
anisotropic and inhomogeneous.  
Statistical formulations should respect this.
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JBM, W. Qi, and S. M. Tobias, “Direct Statistical Simulation of a Jet”  arXiv:1412.0381
(CE2, CE2.5 and CE3).  “GCM” on the Apple Mac App Store (2000+ downloads)

Systems with Zonal Symmetry

q(�,�) = q(�) + q0(�,�)



Kill Three Birds With One Stone?

1.  Address systems that lack zonal symmetry.

2.  Seamlessly integrate sub-grid physics (eg. 

turbulence, convection, clouds, sub-mesoscale 

eddies) into GCMs.

3.  Greatly increase speed and resolution.
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Large-Eddy-Simulation (LES) of Dry Boundary Layer (fully nonlinear and QL)
See poster “Non-local second order closure scheme for boundary layer turbulence”

by Bettina Meyer and Tapio Schneider



Large-Eddy-Simulation (LES) of Dry Boundary Layer (fully nonlinear and QL)
Bettina Meyer & Tapio Schneider (ETH Zurich)
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GQL = Generalized Quasilinear DNS
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f = 2Ω sin(φ)

Barotropic Toy Model of Jets
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Λ= 20 "Truth"
Λ= 3
CE2 (Λ= 0)
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Vorticity Power Spectra

⇤ = 20 “Truth”

1000.0 days Barotropic
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⇤ = 3

1000.0 days Barotropic
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⇤ = 0

1000.0 days Barotropic
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⇤ = 3

⇤ = 0

Two-Point Vorticity Correlations

⇤ = 20 “Truth”



Generalized 2nd Order Cumulant Expansion
(GCE2)

@

@t
q = L[q] +Q[q, q]

@

@t
h = Q[`, h]
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(h h) = 2Q[`, (h] h)

q = `+ h

@

@t
` = Q[`, `] +Q[(h, h)]

Closure
Malecha, Chini, and Julien, J. Comp. Phys. (2013); 
Bakas and Ioannou, PRL 110, 224501 (2013)



Two-layer primitive equations:
Relaxation to a prescribed 

equator-to-pole temperature difference



Λ= 12 "Truth"
Λ= 3
Λ= 0
DNS 40962
M = 3
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⇤ = 0

⇤ = 3

Two-Point Vorticity Correlations

⇤ = 12 “Truth”

Observation

DNS

CE2

(Courtesy F. Sabou)



A Conservative Approximation
GCE2 conserves total angular momentum, energy, 
and enstrophy in absence of forcing and damping.

GCE2 = Closed under selected triads = Realizable
Realizable

A Systematic Approximation
Exact in               limit and often accurate for ⇤ ! 1 ⇤ = 3

Curse of Dimensionality
But:  Slow

Seamless 



The “Curse of Dimensionality” 
— How to Address?

Schmidt decompositionc(~r1,~r2) =
X

i

�i �i(~r1) �i(~r2)

⇡
NX

i=1

�i �i(~r1) �i(~r2)

Entanglement: 
More than one non-zero eigenvalue

c(~r1,~r2) ⌘ hh(~r1)h(~r2)i
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GCE2 truncated

2-Layer Baroclinic QG Model
Spectral 40×10
GQL Λ=3
GCE2 Λ=3
GCE2 Λ=3 N=20
Spectral 40×3
CE2 
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How to Update the Retained 
Basis Dynamically?

Density-Matrix Renormalization-Group (DMRG)

JS
TAT

(2004)
P

04005

Adaptive time-dependent DMRG

Figure 7. Finite-system DMRG algorithm. Block growth and shrinkage. For
the adaptive time-dependent DMRG, replace ground state optimization by local
time evolution.

The effect of the finite-system DMRG algorithm [2] is now to shift the two free sites
through the chain, growing and shrinking the blocks S and E as illustrated in figure 7.
At each step, the ground state is redetermined and a new Schmidt decomposition carried
out in which the system is cut between the two free sites, leading to a new truncation
and new reduced basis transformations (two matrices A adjacent to this bond). It is thus
a sequence of local optimization steps of the wavefunction oriented towards an optimal
representation of the ground state. Typically, after some ‘sweeps’ of the free sites from left
to right and back, physical quantities evaluated for this state converge. While comparison
of the DMRG results to exact results shows that one often comes extremely close to an
optimal representation within the matrix state space (which justifies the use of the DMRG
algorithm to obtain them), it has been pointed out and numerically demonstrated [36, 41]
that finite-system DMRG results can be further improved and better matrix product
states be produced by switching, after convergence is reached, from the S • •E scheme
(with two free sites) to an S • E scheme and to carry out some more sweeps. This point
is not pursued further here, it just serves to illustrate that the finite-system DMRG for
all practical purposes comes close to an optimal matrix product state, while not strictly
reaching the optimum.

As the actual decomposition and truncation procedure in the DMRG and the TEBD
simulation algorithm are identical, our proposal is to use the finite-system algorithm
to carry out the sequence of local time evolutions (instead of, or after, optimizing the
ground state), thus constructing by Schmidt decomposition and truncation new block
states best adapted to a state at any given point in the time evolution (hence adaptive
block states), as in the TEBD algorithm, while maintaining the computational efficiency of
the DMRG. To do this, one needs not only all reduced basis transformations, but also the
wavefunction |ψ⟩ in a two-block two-site configuration such that the bond that is currently
updated consists of the two free sites. This implies that |ψ⟩ has to be transformed between
different configurations. In the finite-system DMRG such a transformation, which was first
implemented by White [28] (‘state prediction’), is routinely used to predict the outcome of
large sparse matrix diagonalizations, which no longer occur during time evolution. Here
it merely serves as a basis transformation. We will outline the calculation for shifting the
active bond by one site to the left.

J. Stat. Mech.: Theor. Exp. (2004) P04005 (stacks.iop.org/JSTAT/2004/P04005) 19

Daley, Kollath, Schollwöck and Vidal (2012)

dim(H) = 2N



Fig. 4. Left: The cutoff in the frequency response is set by the electronic
energy scales, illustrated here by t = V = 2 eV. Right: The dependence
of the current on the magnitude of the electric field for the case of angular
driving frequency ! = 0.8.

Fig. 5. Comparison between the tDMRG and numerically exact integration
for a 10-site Hubbard chain. The system is driven by an oscillating electric
field with angular frequency ! = 0.8 and amplitude E = 0.1. The tDMRG
blocks are of dimension 300 and 50, and the tDMRG time step is 0.1. The
agreement with the exact solution deteriorates with time, especially in the
case of small blocks which result in a truncation of the Hilbert space.

the forward, reverse, and net junction current as a function of
the amplitude of the driving electric field. The finite value
of the net current shows that the model junction responds
asymmetrically to changes in the polarity of initial applied
field. Whether or not such rectification is sustained over longer
times is a question that remains to be addressed.

V. CONCLUSION

Idealized models of junctions between doped Mott insula-
tors have been shown to exhibit rectification up to frequencies
of order the electronic scale. Short chains of spin-polarized
electrons with and without phenomenological dissipation were
investigated by numerically exact time integration. Rectifica-
tion ceases in the non-interacting limit, as expected, because
it requires not only broken reflection symmetry but also
strong electronic correlations. Longer Hubbard model chains
were simulated using the tDMRG algorithm without added

Fig. 6. tDMRG simulation (with block size of 300) of a 40-site Hubbard
chain with µ = ±0.5, Coulomb interaction U = 2, and driving frequency
! = 0.8. The driving electric field E(t) grows sinusoidally from zero to
a maximum, and an averaged junction current is calculated over this time
interval. The response of the junction to this field, and one of opposite polarity,
is shown. The net current quantifies the amount of rectification.

dissipation. Further studies of longer chains and more realistic
multi-channel models can test the potential for devices made
from doped transition metal oxides such as VO2, LaVO3, and
NdNiO3 to rectify high-frequency electric fields. New classes
of applications may be possible with such devices.
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How to Update the Retained 
Basis Dynamically?

Sabou, Boddington, JBM (2012)



Open Questions

• How to dynamically adapt basis?

• Filter in real space, wavenumber space, or 

something else? 
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