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Normalized dissipation rate D versus Rλ. Direct numerical simulation data from Gotoh et al. (2002),
Ishihara & Kaneda (2002), and Kaneda et al. (2003), together with those compiled by Sreenivasan (1998),
i.e., the data from Cao et al. (1999), Jiménez et al. (1993), Wang et al. (1996), and Yeung & Zhou (1997).
Figure redrawn from Kaneda et al. 2003.

spectrum is of the form

E(k)/(〈ε〉 ν5)1/4 = φ(kη) (1)

in the wave-number range k # kL ≡ 1/L, and in particular

E(k) ≈ Ko 〈ε〉2/3k−5/3 (2)

in the inertial subrange kL ' k ' kd , where φ is a universal function of kη, kd ≡ 1/η, and Ko is a
nondimensional universal constant.

One can stringently examine Equation 2 by viewing a plot of the compensated spectrum
Ê(kη) = k5/3 E(k)/〈ε〉2/3 (Figure 3). If Equation 2 holds, the curves must be flat. The curves
are nearly, but not strictly, flat at kη ≈ 0.01. The curves of Ê(kη) are close to each other at large
kη and Rλ, in accordance with K41. The same is also true for the energy-flux &(k) across wave
number k defined as &(k) =

∫ ∞
k T(k)dk,where T(k) is the energy transfer function. A bump is

observed in Ê(kη) at kη ≈ 0.1, but its height is lower for larger Rλ. A similar, but less prominent,
bump is also observed in the one-dimensional spectrum, E11(k1) (Gotoh et al. 2002, Saddoughi &
Veeravalli 1994, Yeung & Zhou 1997).

The existence of a sufficiently wide inertial subrange kL ' k ' kd with

&(k) = 〈ε〉 (3)

is a prerequisite for theories and analyses of statistics in the inertial subrange. However, at Rλ !
200, such a range is not observed in Figure 3a. Misidentification of the range near the peak of
the bump (i.e., kη ≈ 0.1) as the inertial subrange results in an overestimate of the Kolmogorov
constant Ko . kη must be as small as ∼0.01 to realize Equations 2 and 3. The plots give Ko = 1.5–
1.7. This value is close to the experimental value Kexp = 1.62 (Sreenivasan 1995) and consistent
with DNSs by Gotoh & Fukayama (2001), Kaneda (2001), and Yeung & Zhou (1997). However,
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gravity forces at scales large enough that nonlinearities
can be neglected; this balance is crucial for weather fore-
casting and simulations of climate change. However, the
consequences of geostrophic balance, as far as helical mo-
tions are concerned, has been mostly ignored except for
the pioneering work of Hide [17]. Helicity was hypothe-
sized to be important in the atmosphere in the dynamics
and persistence of rotating convective storms [18] on the
basis of the weakening of non-linear interactions in the
so-called Lamb vortex u×ω. Helicity is measured in the
context of forecasting storms and tropical tornadoes, in
particular in the presence of strong shear and it can be
used as an indicator of storm occurrence [19].

Since helicity is no longer an invariant in the absence
of dissipation, its presence in these atmospheric storms
must be explained but the physical mechanisms govern-
ing its creation, and the structures associated with it,
remain unclear. In this paper, we perform a paramet-
ric study using direct numerical simulations in which we
vary both rotation and stratification, and we show that
a rotating stratified flow can spontaneously create helic-
ity through a mechanism directly linked to geostrophic
balance at large scales.

II. EQUATIONS AND NUMERICAL PROCEDURE

We integrate the incompressible Boussinesq equations,
with solid-body rotation Ω and gravity g, anti-aligned in
the vertical (z) direction, with b the buoyancy (in units
of velocity), w the vertical velocity, P the pressure, ν
the viscosity, and κ the diffusivity (with unit Prandtl
number, ν = κ):

∂tu+ u ·∇u− ν∆u =−∇P −Nbez − 2Ωez × u ,(1)

∂tb+ u ·∇b− κ∆b = Nw , (2)

∇ · u = 0 . (3)

The Brunt-Väisälä frequency is N = [−g∂z b̄/b]1/2 where
∂z b̄ is the background imposed stratification; the iner-
tial wave frequency is 2kzΩ/k. The code is pseudo-
spectral with periodic boundary conditions in all direc-
tions and unit aspect ratio; it is parallelized with a hybrid
MPI/OpenMP method [20], and has been run on grids of
up to 81963 points (for short times), using up to 98304
compute cores.

The Froude, Rossby and Reynolds numbers are de-
fined, respectively, as

Fr =
urms

NLint
, Ro =

urms

fLint
, Re =

urmsLint

ν
,

with f = 2Ω, and with urms and Lint =
∫

[EV (k)/k]/EV

the rms velocity and integral scale evaluated around the
maximum of enstrophy; EV = 1

2

〈

u2
〉

is the kinetic en-
ergy. These parameters vary in the range 0.006 ≤ Fr ≤
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FIG. 1: Temporal evolution of the total helicity (top) and
enstrophy (bottom), both for Fr ∼ 0.01, N = 12.56, varying
rotation (and thus N/f, see insets). Oscillations are propor-
tional to N and are due to gravity waves (middle).

0.27, 0.012 ≤ Ro ≤ 8.1, and Re ≈ 3000 for grids of 2563

points, and Re ≈ 8000 using 5123 points. Decay is left
to occur for 15 to 30 turn-over times, τNL = Lint/urms.
The initial velocity field is random, with all three compo-
nents non-zero, and it is centered around wavenumbers
k0 = [1, 2]. At t = 0, b = 0, and HV ≈ +0.2. Other
initial values have been used as well to ascertain that the
results are insensitive to them. In the ideal (ν = 0) case,
potential vorticity

PV = −fN + f∂zb−Nωz + ω ·∇b

is a point-wise invariant, and the total (kinetic + poten-
tial) energy ET = EV + EP is conserved as well, with
respective enstrophies (proportional to dissipation when
ν &= 0),

ZV =
〈

ω2
〉

, ZP =
〈

|∇b|2
〉

.

Note that PV is quadratic and thus its L2 norm is not
conserved in general by the truncation; however, the non-
linear term ω · ∇b can be neglected in the presence of
strong rotation and stratification [21].

III. RESULTS

A. The helical version of geostrophic balance

We start from the primitive Boussinesq equations given
above and simplify them using several hypotheses. As-
suming stationarity, weak nonlinearities and small dissi-

Boussinesq equations	


+ F	


f=2Ω	


Four dimensionless parameters:   Re= UL/ν  >> 1 
Pr= ν/κ =1,  Ro= U/[Lf]  << 1   ,   Fr= U/[LN]  << 1 
 
RB= Re Fr2  
 2 ≤  N/f ≤  10  
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The Brunt-Väisälä frequency is N = [−g∂z b̄/b]1/2 where
∂z b̄ is the background imposed stratification; the iner-
tial wave frequency is 2kzΩ/k. The code is pseudo-
spectral with periodic boundary conditions in all direc-
tions and unit aspect ratio; it is parallelized with a hybrid
MPI/OpenMP method [20], and has been run on grids of
up to 81963 points (for short times), using up to 98304
compute cores.

The Froude, Rossby and Reynolds numbers are de-
fined, respectively, as

Fr =
urms

NLint
, Ro =

urms

fLint
, Re =

urmsLint

ν
,

with f = 2Ω, and with urms and Lint =
∫

[EV (k)/k]/EV

the rms velocity and integral scale evaluated around the
maximum of enstrophy; EV = 1

2

〈

u2
〉

is the kinetic en-
ergy. These parameters vary in the range 0.006 ≤ Fr ≤

 

−0.4

−0.2

0

0.2

0.4

 

H
T

 

 

N = 6.283    Fr  =  0.025
N = 1.256    Fr  =  0.12
N = 0.783    Fr  =  0.22

 

−0.4

−0.2

0

0.2

0.4

 

H
T

 

 

Fr = 0.012 N/f ~ 1.5    Ro  =  0.036
N/f ~ 3.0    Ro  =  0.073
N/f ~ 16.7  Ro  =  0.41

0 2 4 6 8 10 12
 
1

1.5
2

2.5
3

3.5
 

Fr = 0.012

N/f

eddy turnover time

En
st

ro
ph

y

 

 

1.0 1.5 2.0 2.5 3.0 4.0 8.0 16.7

FIG. 1: Temporal evolution of the total helicity (top) and
enstrophy (bottom), both for Fr ∼ 0.01, N = 12.56, varying
rotation (and thus N/f, see insets). Oscillations are propor-
tional to N and are due to gravity waves (middle).

0.27, 0.012 ≤ Ro ≤ 8.1, and Re ≈ 3000 for grids of 2563

points, and Re ≈ 8000 using 5123 points. Decay is left
to occur for 15 to 30 turn-over times, τNL = Lint/urms.
The initial velocity field is random, with all three compo-
nents non-zero, and it is centered around wavenumbers
k0 = [1, 2]. At t = 0, b = 0, and HV ≈ +0.2. Other
initial values have been used as well to ascertain that the
results are insensitive to them. In the ideal (ν = 0) case,
potential vorticity

PV = −fN + f∂zb−Nωz + ω ·∇b

is a point-wise invariant, and the total (kinetic + poten-
tial) energy ET = EV + EP is conserved as well, with
respective enstrophies (proportional to dissipation when
ν &= 0),

ZV =
〈

ω2
〉

, ZP =
〈

|∇b|2
〉

.

Note that PV is quadratic and thus its L2 norm is not
conserved in general by the truncation; however, the non-
linear term ω · ∇b can be neglected in the presence of
strong rotation and stratification [21].

III. RESULTS

A. The helical version of geostrophic balance

We start from the primitive Boussinesq equations given
above and simplify them using several hypotheses. As-
suming stationarity, weak nonlinearities and small dissi-

Boussinesq equations	


+ F	


f=2Ω	


Four dimensionless parameters:   Re= UL/ν  >> 1 
Pr= ν/κ =1,  Ro= U/[Lf]  << 1   ,   Fr= U/[LN]  << 1 
 
RB= Re Fr2  
 2 ≤  N/f ≤  10  



6 

crease in R!!
in run B to the value quoted above in the first

five turnover times, both R! and R!!
keep growing slowly as

! and !! slowly increase. On the other hand, a Taylor
Reynolds number based on the parallel scale for run B,
R!!

=U!! /", stays approximately constant after t=10. Note
that these values are larger than the typical values considered
in experiments with similar Rossby numbers "see e.g., Ref.
26#. This is the result of the large spatial resolution used in
the simulations, which allows us to study flows at larger
Reynolds numbers than what is often considered.

Yet another measure of small scale spectral anisotropy is
given by the Shebalin angles,38

tan2"## = 2
$k!

k!
2 E"k!#

$k!
k!

2E"k!#
, "14#

tan2"#H# = 2
$k!

k!
2 H"k!#

$k!
k!

2H"k!#
. "15#

These angles measure the spectral anisotropy level, with the
case tan2"##=2 corresponding to an isotropic flow. As the
previous quantities, they only give a global measure of
small-scale anisotropy and are a byproduct of the axisym-
metric energy spectra "see Refs. 11 and 23#. Figure 6 shows
the time evolution of the angles based on the energy and on
the helicity. The helicity at small scales is again more isotro-
pic than the energy. However, unlike the previous quantities,
the Shebalin angles grow fast and then saturate in both cases,
reaching a steady state after ten turnover times.

Finally, the amount of energy and helicity in two-
dimensional modes can be measured with the ratios
E"k! =0# /E and H"k! =0# /H "see Fig. 7#. Again, the spectral
distribution of energy is more anisotropic than for helicity.
Note that at late times a substantial fraction of the energy is
in modes with k! =0; at t%29 near 95% of the energy is in
those modes, while less than 75% of the helicity is in the
same modes. All these results indicate that the distribution of
energy is more anisotropic than that of helicity at all scales.
As will be discussed next, this is due to the fact that helicity
only suffers a direct cascade and is therefore transported in
spectral space to smaller scales which are more isotropic.

IV. SPECTRAL BEHAVIOR

Figure 8 shows the isotropic energy and helicity spectra
in run A. The run, with negligible rotation effects, displays
the usual Kolmogorov scaling in the inertial range of the
energy and the helicity, with a dual cascade of both quanti-
ties toward small scales. As in many simulations of three-
dimensional isotropic and homogeneous turbulence, the short
inertial range is followed by a bottleneck "which makes the
spectra slightly shallower# and then by a dissipative range.
The dual cascade toward smaller scales is further confirmed
by examination of the energy and helicity fluxes "inset of
Fig. 8# which are both positive and constant across the iner-
tial range to the right of the forcing wave number. At wave
numbers smaller than kF, both fluxes are negligible. The
small amount of energy and helicity observed in the spectra
at those wave numbers is the result of backscatter, not of a
cascade, and the energy in the large scales displays a slope
compatible with a &k2 scaling "see e.g., Refs. 39 and 40#.

The energy and helicity spectra and fluxes at late times
in run B at Ro=0.06 are shown in Fig. 9. An inverse cascade
of energy develops, as evidenced in the spectrum by the pile
up of energy at scales larger than the forcing, and in the
energy flux by a range of wave numbers with nearly constant
and negative transfer. However, unlike two-dimensional
turbulence,41 not all the energy injected in the system under-

FIG. 6. Shebalin angles based on the energy "solid# and helicity spectra
"dashed# as a function of time in run B.

FIG. 7. Ratios E"k! =0# /E "solid line# and H"k! =0# /H "dash line# as a func-
tion of time in run B.

FIG. 8. Isotropic energy spectrum "solid# and helicity spectrum "dashed#
normalized by the forcing wave number in run A with Ro=8.5. Kolmogorov
scaling is shown as a reference. The inset gives the isotropic energy flux,
and the helicity flux normalized by the forcing wave number.

035105-5 Rotating helical turbulence. I. Global evolution Phys. Fluids 22, 035105 !2010"
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Figure 2. Energy spectra for the two simulations for the different resolutions (labels as in
figure 1). Dashed and dotted lines represent the two predictions Ck−5/3 with C = 6 and k−3

respectively. Inset: correction δ to the Kraichnan exponent −3 as a function of viscosity,
computed by fitting the spectra with a power law k−(3+δ) in the range 100 ! k ! 400.

of the energy transferred to large scales, while the Kolmogorov scaling k−5/3 is always
observed with a Kolmogorov constant C " 6, in agreement with Boffetta et al. (2000)
and virtually independent of resolution. The effect of finite resolution on the enstrophy
cascade range is, of course, more dramatic. We observe here a significant correction
to the Kraichnan spectrum k−3 even for the 16 384 run, where we measure a scaling
exponents close to −3.6. We note that a similar steepening of the spectrum has been
observed even for simulations with a more resolved direct cascade range (here we
have kmax/kf " 55 at the highest resolution). Despite these difficulties, there is a clear
indication that the correction to the exponent is a finite-size effect which eventually
disappears on increasing the extent of the inertial range (see inset of figure 2). The
conclusion, therefore, is that a k−3 spectrum in stationary solutions of (2.1) could
be achieved only by taking simultaneously the limits L/"f → ∞ and "f /"d → ∞ (i.e.
vanishing α and ν).

3. Analysis of fluxes in physical space
A better understanding of the physical mechanism at the basis of the cascades can

be obtained by looking at the distribution of fluxes in space. This can be obtained
by using a filtering procedure recently introduced and applied separately to the direct
cascade by Chen et al. (2003) and to the inverse cascade by Chen et al. (2006).
Thanks to the resolution of the present simulations, we are able to analyse both
cascades jointly and also the correlation between them. Following Chen et al. (2003),
we introduce a large-scale vorticity field ωr ≡ Gr &ω obtained from the convolution
of ω with a Gaussian filter Gr , and a large-scale velocity field vr ≡ Gr & v. From
these definitions, balance equations for the large-scale energy er (x, t) = (1/2)|vr |2 and
enstrophy zr (x, t) = (1/2)ω2

r densities are easily written (with a compact notation):

∂t (er, zr ) + ∇ · J (e,r)
r = −Π (e,r)

r − D(e,r)
r + F (e,r)

r (3.1)
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Figure 1. (a) Energy and (b) enstrophy fluxes in Fourier space at resolutions 2048 (A), 4096
(B), 8192 (C) and 16384 (D). At resolution 16384 fluxes are computed on a single frame.

One of the simplest pieces of information which can be obtained from table 1 is
related to the energy–enstrophy balance. At N = 2048 only about half of the energy
injected is transferred to large scales where it is removed by friction at a rate εα = 2αE.
This fraction increases with the resolution and becomes about 95 % for the N = 16386
run. The remaining energy injected is dissipated by viscosity at scales comparable with
the forcing scale and at a rate proportional to ν (which thus decreases on increasing
the resolution).

Most of the enstrophy (around 90 %) follows the direct cascade to small scales,
where it is dissipated by viscosity. We observe a moderate increase of the large-scale
enstrophy dissipation ηα on increasing the resolution: this is a finite-size effect due the
increase of α with N (see table 1) necessary to keep the friction scale %α ! ε1/2

α α−3/2

constant with increasing εα .
In figure 1 we plot the fluxes of energy and enstrophy in wavenumber space.

Observe that because we change the resolution while keeping the ratio L/%f constant,
the only effect of reducing the grid size on the inverse cascade is the decrease of
the energy transferred to large scales (being εα = εI − εν with εν proportional to ν)
while the extent of the inertial range is almost unaffected. The behaviour of the fluxes
around k ! kf depends on the details of the injection: the transition from zero to
negative (positive) energy (enstrophy) flux is sharp in the case of forcing for a narrow
band of wavenumber (run D) while it is more smooth for the Gaussian forcing
which is active on more scales. Fluctuations observed in the energy flux for run D
are a consequence of the short time statistics in this case. These results confirm the
robustness of the energy inertial range regardless of the viscous dissipative scale, a
further justification of many simulations of the inverse cascade in which, because of
the limited resolution, the forcing scale is very close to the dissipative scale.

Unlike the inverse cascade, the direct enstrophy cascade is strongly affected by finite
resolution effects. This is not a surprise because, by keeping %f fixed, the extent of the
direct cascade is simply proportional to N . As shown in figure 1, we observe a range
of wavenumbers with almost constant flux ΠZ(k) only for the runs with N ! 8192.

Figure 2 shows the energy spectra computed for the different runs. We remark
again that the only effect of finite resolution on the inverse cascade is the reduction
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Paradigm with 2 invariants like energy & enstrophy: 
 
 
2D: Dual but mutually exclusive system with an  
       inverse cascade of energy & a direct enstrophy cascade 
 
3D: Direct cascade of energy, and direct helicity cascade 
 
 

BUT … 
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TABLE I. The behavior (2D, 3D or l for critical) of the turbulence for various (S, Ro) and
2D2C forcing.

(I) 128 3 128 3 8 (II) 512 3 512 3 8 (III) 256 3 256 3 32

⇥0.75, `⇤ 3D ⇥12⌥16, `⇤ 3D ⇥0.75, 1.6⇤ l ⇥2.0, 1.5⇤ 3D
⇥0.75, 2.0⇤ 3D ⇥9⌥16, `⇤ 3D ⇥0.75, 1.3⇤ 2D ⇥4.0, 1.8⇤ 3D
⇥0.75, 1.4⇤ 3D ⇥8⌥16, `⇤ l ⇥0.75, 1.25⇤ 2D ⇥4.0, 1.4⇤ l
⇥0.75, 1.25⇤ l ⇥7⌥16, `⇤ 2D ⇥0.75, 0.5⇤ 2D ⇥4.0, 1.25⇤ 2D
⇥0.75, 1.2⇤ 2D ⇥6⌥16, `⇤ 2D ⇥1.0, 0.25⇤ 2D ⇥4.0, 1.1⇤ 2D
⇥0.75, 1.1⇤ 2D ⇥4⌥16, `⇤ 2D ⇥0.5, 2⇤ 2D ⇥4.0, 1.0⇤ 2D
⇥0.75, 0.75⇤ 2D ⇥0.75, 2⇤ 3D ⇥8.0, 0.7⇤ 2D
⇥0.75, 0.5⇤ 2D

decreases slowly for S . 0.75. The data suggest that Roc
may asymptote to a nonzero constant for large S.
Numerical data sets I and II were used to explore S # 1.

For aspect ratios A � 1⌥16 and 1⌥64, the range of S is
limited by the dimensions of the box to approximately
0.1 # S # 1. For S � 0.75, we found the near-critical
values Ro � 1.25 for A � 1⌥16 and Ro � 1.6 for A �
1⌥64 (Table I). The critical Ro for fixed S changes by
(20–25)% when the aspect ratio is lowered from A �
1⌥16 to 1⌥64, suggesting that finite-size effects in the
horizontal directions may be influencing the results for
the case A � 1⌥16. For fixed S and decreasing Ro, the
value of ed⌥ef decreases approximately linearly for Ro
less than the critical value, indicating that a larger fraction

FIG. 1. A � 1⌥64, Ro � `, S � 0.75 (solid line); A � 1⌥64,
Ro � `, S � 0.375, eddy viscosity model (dashed line); A �
1⌥64, Ro � `, S � 0.375, hyperviscosity operator =4 (dotted
line); A � 1⌥64, Ro � 0.5, S � 0.75 (dot-dashed line).

of energy is cascaded to large scales as the Rossby number
is decreased below critical. Figure 1 compares Ro � `
(solid) and Ro � 0.5 (dot-dashed line) for A � 1⌥64 and
S � 0.75.
The scaling ed � O⇥Ro⇤ indicated by our results for

2D2C forcing can be understood in light of the closures
[9,11] which show that, in a statistically steady state, the
energy flux to k . kf is proportional to a decorrelation
time scale ⇥ukpq⇤. In the absence of rotation, this time scale
is determined by the nonlinear interactions and is O⇥1⇤
with respect to the variables nondimensionalized by ef and

FIG. 2. (upper) A � 1⌥64, Ro � `, S � 0.75 (statistically
steady); (lower) A � 1⌥64, Ro � `, S � 0.375: eddy viscosity
(solid line) with time increasing upwards; hyperviscosity

(dotted line). The lines are Eh ~ k
25⌥3
h .

2469

3D, T-HI, 2D2C force, A=Lz/Lx=1/64 with S = Lf/Lz 
Turbulent viscosity, Navier-Stokes, no rotation, 1283 grid 

S=3/4 

S=3/8 
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law Kolmogorov-like cascade of energy toward higher frequen-
cies (13). Under the right conditions, however, an instability
against subharmonic generation can develop, leading to an in-
verse cascade. It involves a flux of energy toward lower fre-
quencies (72). The onset of the inverse cascade as the heater
power is increased is of a critical character, which can be related
to the need to overcome dissipation. By direct numerical in-
tegration of the two-fluid thermohydrodynamical equations, ex-
panded up to quadratic terms in the wave amplitude, it was
possible to account for these phenomena theoretically. A key
feature of the calculation is that explicit account was taken of
wave damping at all frequencies. The results are shown in Fig. 2.
The main figure compares the calculated and measured values of
the critical driving amplitude at which the instability develops.
There is considerable hysteresis in the experimental measure-
ments, which is consistent with the theoretical prediction of
a hard instability in the relevant parameter range, as shown by
the inset bifurcation diagram.
The transient behavior of the second sound system is of par-

ticular interest. When the system is switched on, under con-
ditions such that an inverse energy cascade is expected, the
sequence of events is that the direct cascade builds up fast, al-
most immediately; there is an intermediate interval within which
isolated “rogue waves” (waves that are very much larger than any
of their neighbors) appear (73); and, finally, the inverse cascade
appears. The results of the observations are shown in Fig. 3. In
steady state, the energy injected from the heater is shared
between the forward and inverse cascades. During the build-
up of the direct cascade, the initial growth of spectral ampli-
tude follows power laws that become steeper with increasing
harmonic number, behavior that corresponds to a propagating
front in frequency space (74). Each successive harmonic suf-
fers a larger onset delay, and the data are well described by
the self-similar theory.
The decay of the WT when the driving force was switched off

was found to exhibit complex and interesting dynamics (75). As
in the case of WT among capillary surface waves (discussed
above), the decay started from the high-frequency end of the
spectrum. A windowed Fourier analysis revealed very compli-
cated and seemingly chaotic behavior of the individual harmonic
amplitudes that has yet to be accounted for theoretically.

Coupled First Sound–Second Sound Waves in Superfluid 4He. At
temperatures close to the superfluid transition temperature Tλ or
at elevated pressures, second sound waves in superfluid 4He
become coupled to first sound, that is, to the ordinary pressure
(density) waves (76, 77). In this case, mutual transformations
between the first and second sound waves owing to nonlinearity
provide an additional channel for energy propagation and re-
laxation in the system. In superfluid helium, the characteristic
relaxation time for first sound, τ1, is much shorter than that for
second sound, τ2, namely τ1=τ2 ∼ ðc2=c1Þ3 ∼ 10−3 (c2 and c1 are
the second and first sound velocities, respectively). In effect, the
first sound is in quasi-equilibrium with the second sound waves
and induces an effective four-wave mixing for the latter (78). In
the turbulent regime that forms at high enough driving forces,
both the high-frequency energy E- and low-frequency N -cas-
cades are becoming established, in close similarity with BECs
considered above. For this coupled first sound–second sound wave
turbulence, the exponents found from the solution of respective

Fig. 2. Second sound turbulence: the dependence of the AC heat flux
density W at which the instability develops on the dimensionless frequency
detuning Δ= ðωd −ωnÞ=ωn of the driving force frequency ωd from a cavity
resonance ωn. Numerical calculations (line) are compared with measure-
ments (points) for driving on the 96th resonance. Horizontal bars mark the
widths of the hysteretic region where second sound exists in a metastable
state. (Inset) Bifurcation diagram showing regions of stability (unshaded)
and regions of instability (yellow shaded) against the generation of sub-
harmonics. The soft instability occurs over the (orange) line between the
(green) critical points at ±Δ*; outside them lies the hard instability; W* is
the threshold value of the instability. (After ref. 72.)

Fig. 3. (A) Transient evolution of the second sound wave amplitude δT after
a step-like shift of the driving frequency to the 96th resonance at time t =
0.397 s. Formation of isolated “rogue” waves is clearly evident. (Inset) Ex-
ample of a rogue wave, enlarged from frame 2. (B) Instantaneous spectra in
frames 1 and 3 of A. The lower (blue) spectrum, for frame 1, shows the direct
cascade only; the upper (orange) spectrum, for frame 3, shows both the
direct and inverse cascades. The green arrow indicates the fundamental
peak at the driving frequency. (Inset) Evolution of the wave energy in the
low-frequency and high-frequency domains is shown by the orange squares
and blue triangles respectively; black arrows mark the positions of frames 1
and 3. (After ref. 72.)

Kolmakov et al. PNAS | March 25, 2014 | vol. 111 | suppl. 1 | 4731
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as an indicator. Figure 2 shows the dependence of ELF on
the ac heat flux density W, when driving on the 96th
resonance close to 2.08 K. For small W we did not observe
any subharmonic generation at all [7]. Then, above a
critical flux Wc, ELF rose rapidly, suggesting that the
phenomenon is of a threshold character. At T ! T" !
1:88 K for which " vanishes [18], no subharmonics were
observed, regardless of the magnitude of W, thus confirm-
ing the crucial importance of nonlinearity. For W above
10:4 mW=cm2, we observed a distortion of the signal
similar to that shown in Fig. 1(c) and the formation of a
few subharmonics. Further increase of W above
20 mW=cm2 led to the generation of multiple subhar-
monics. These phenomena appear in the regime where
the energy cascade towards the high-frequency domain
(i.e., direct cascade, with a Kolmogorov-like spectrum
[7,8]) is already well developed; see also Fig. 4.

All the above results correspond to steady-state regimes
of the wave system. In Fig. 3 we illustrate the transient
processes observed after a steplike shift of the driving

frequency from a frequency initially set far from any
resonance to the 96th resonance frequency for W !
42:1 mW=cm2, T ! 2:08 K. We find that harmonics of
the drive in the high-frequency spectral domain are formed
very quickly, but that formation of the subharmonics takes
much longer: it took "0:5 s here, and can reach several
tens of seconds under some conditions [19]. It is evident
from the inset in Fig. 3 that, as the instability develops,
isolated ‘‘rogue waves’’ appear in the signal. As time

FIG. 2 (color online). The energy ELF contained in the low-
frequency part of the spectrum as a function of the ac heat flux
density W, while driving near to the 96th resonance for T ’
2:08 K. The threshold value of W, marked by the (green) arrow,
was Wc ! 10:4 mW=cm2. The points are from experiment;
dashed lines are guides to the eye. Inset: The dependence of
ELF on !d, measured for W ! 55:6 mW=cm2; the (red) arrow
labels the maximum value of ELF, which is taken to the main
figure.

FIG. 3 (color online). Transient evolution of the 2nd sound
wave amplitude !T after a steplike shift of the driving frequency
to the 96th resonance at time t ! 0:397 s. Signals in frames 1
and 3 are similar to those obtained in steady-state measurements,
Figs. 1(a) and 1(c), respectively. Formation of isolated ‘‘rogue’’
waves is clearly evident. Inset: Example of a rogue wave,
enlarged from frame 2.

FIG. 1 (color online). Evolution of the observed wave shape in
the resonator (left column) and of the power spectrum of second
sound standing waves (right) with increasing drive frequency !d
near the 96th resonance: !d=2# ! 9530:8 Hz (a),(b) and
9535.2 Hz (c),(d). The ac heat flux density was W !
42 mW=cm2. The temperature T ! 2:08 K corresponded to
negative nonlinearity. The fundamental and first harmonic
in (b),(d) are indicated by vertical (green and blue) arrows at
"10 and 20 kHz; the low-frequency domain where the subhar-
monics appear is indicated by the horizontal range in (d) under
the leftmost vertical (red) arrows. The horizontal arrows
in (a),(c) indicate the fundamental period of a wave at the driving
frequency.
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energy in these scales is mostly contained in the 2D modes
k‖ = 0. This means that the flow in the large scales is almost
2D. (Here the flow is referred to as 2D in the sense that u has no
dependence on the z direction and not that the uz component
is absent.) On the other hand, at the small scales Eu(0,k⊥) is
significantly smaller than Ēu, thus the 2D modes contain only
a small fraction of the energy and therefore the flow is three
dimensional.

The bottom panel of Fig. 3 compares the magnetic energy
spectra Eb(0,k⊥) and Ēb. Unlike the velocity field the magnetic
field remains strongly three dimensional for all scales since
Eb(0,k⊥) # Ēb. The amplitude of the magnetic energy is
much smaller than that of the kinetic energy in the large scales
but of the same order in the small scales. This is essential for
the presence of the 2D-inverse cascade. If the magnetic field
fluctuations were strong enough in the large scales, the flow
would behave as a 2D-MHD flow with a direct cascade.

The k−5/3 scaling prediction for the 2D inverse cascade, the
k−3 for the direct 2D cascade, and the k−2 prediction of WTT
are shown as a reference. The observed spectra are compatible
with k−5/3 in the large scales and k−2 in the small scales;
however, the inertial ranges in the examined flow are too small
to be conclusive.

B. Guiding magnetic field strength

As a next step the dependence of the inverse cascade,
observed in R1, on the amplitude of the uniform magnetic field
is examined. Runs R2 and R3 have all parameters similar to run
R1 but a different value of the magnetic field amplitude. The
flux of energy in both directions for runs R1, R2, and R3 are
compared in Fig. 4. As expected, the amplitude of the uniform
magnetic field has a drastic effect on the energy flux. The
top panel of this figure shows !⊥(k⊥). R2 (dashed line) that
has smaller value of V

A
than run R1 (solid line) has no inverse

cascade and a stronger direct cascade. R3 (dashed-dot line) that
has larger value of V

A
has on the contrary a stronger inverse

cascade and a weaker forward cascade. The bottom panel of

FIG. 4. Top panel: The energy flux in the perpendicular direction
for R1 (V

A
= 5, solid line), R2 (V

A
= 2, dashed line), and R3

(V
A

= 10, dashed-dot line). Bottom panel: The energy flux in the
perpendicular direction for the same runs.

FIG. 5. Top panel: The kinetic energy spectra of Ēu(k⊥) (solid
line) and Eu(0,k⊥) (dashed line) for R3, V

A
= 10 (top lines), R1, V

A
=

5 (middle lines), and R2, V
A

= 2 (bottom lines). Bottom panel: The
kinetic energy spectra Ēu(k⊥) (solid line) compared to the magnetic
energy spectra Ēb(k⊥) (dashed line) of the same runs and with the
same order. The spectra have been shifted for reasons of clarity.

Fig. 4 shows the energy flux in the parallel direction. As the
magnetic field is increased the flux to large kz is decreased.
This expected since in the V

A
= ∞ limit there is cascade only

in perpendicular direction. It is noted that although V
A

is larger
than the root mean square of the velocity fluctuations, because
the cascade moves the energy to large k⊥ the ratio ukk⊥/B0k‖
is larger than unity in the case of R2, making the cascade strong
in the small scales and leading to a nonzero flux in the parallel
direction.

The spectra for these runs are compared in Fig. 5. The top
panel of this figure shows the kinetic energy spectra Ēu(k⊥)
and Eu(0,k⊥). The spectra have been shifted for reasons of
clarity. In the two runs R1 and R3 that showed an inverse
cascade, energy is concentrated in the largest scales. What can
also be observed is that as V

A
is increased the flow comes

closer to a two-dimensional flow. For R2 for which V
A

= 2
and no inverse cascade is observed, the flow is far from two
dimensional even at the largest scales.

The bottom panel panel of Fig. 5 compares the kinetic
energy spectra Ēu(k⊥) (solid line) with the magnetic energy
spectra Ēb(k⊥) (dashed line). As the uniform magnetic field
is increased the magnetic fluctuations are decreased compared

056330-4
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FIG. 1. Absolute value of the third order structure function
|S3(kn)| (circles). The sign of S3(kn) is positive (full circles) for
kn < kh and negative (empty circles) for kn ! kh. Here kh/kf = 27.

cn+1 = 0 for energy conservation) we adopt the following
choice:

an = 1, bn = −1 − λ−1/2, cn = λ−1/2 for 1 " n " nh,
(3)

an = 1, bn = −1 − 1/2, cn = 1/2 for nh " n " N.

In spite of its simplicity this model is able to reproduce some
interesting features of turbulence in thin layers. In particular
it has been recently shown that a split energy cascade [12]
may be observed if the flow is sustained by an external force
with a correlation length larger than the depth of the fluid. A
finite fraction of the energy which is injected by the forcing is
transferred to lower wave numbers, thus developing an inverse
energy cascade. The remnant energy is transferred toward high
wave numbers in a direct energy cascade.

In order to investigate such a phenomenon in the shell
model we performed numerical simulations of Eq. (1) where
the coefficients (a,b,c) are chosen according to Eqs. (3). We
allow the shell nh, associated to the fluid depth, to vary in
the range nf " nh < N . In the simulations the number of
shells is N = 40, and the forcing shell is fixed to nf = 20.
The amplitude of the forcing is chosen in order to provide
an energy input εI = 1 and the coefficients of the dissipative
term are ν = 10−14, µ = 102, and p = q = 1. The scale ratio
between neighboring shells is λ = 2 and k0 = 1/2.

Following [9,11], let us define the third order structure
function S3(kn) = Im

{
〈un−1unu

∗
n+1〉

}
, whose sign allows us

to discriminate the direction of the energy flux. As shown in
Fig. 1, two distinct scaling ranges can be identified. At small
wave numbers kn < kf the third order structure function scales
as S3(kn) ∼ k−1

n and has positive sign, indicating the presence
of an inverse cascade of energy with Kolmogorov scaling. The
same scaling behavior is recovered also at high wave numbers
kn > kh, but with a negative sign of S3(kn), which signals the
reversal of the direction of the cascade.

In order to quantify how the energy splits among the two
cascades we computed the energy flux defined as $(kn) =∑N

j=n Re{%j (u,u)u∗
j }, which shows two plateaus $(kn) =

−εµ for 1 & n < nf and $(kn) = εν for nf < n & N (see
Fig. 2). The energy balance in the statistically steady state,
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FIG. 2. Energy flux $(kn) normalized with the input εI

for increasing values of kh/kf from top to bottom: kh/kf =
20,21,23,25,215. The shell kh is indicated by black dots on each
curve. Inset: Energy flux in the direct energy cascade εν as a function
of the scale separation kh/kf . Dashed line represents the prediction
εν/εI ∼ (kh/kf )−β .

which is achieved after an initial transient in which the two
cascades develop, imposes that the sum of the fluxes in the
inverse cascade εµ and direct cascade εν equals the energy
input εI . The ratio of the two fluxes depends on the scale
separation between the forcing shell kf and the shell associated
to the thickness of the fluid layer kh. The flux of energy
of the inverse cascade reduces as the thickness h ∼ 1/kh

increases, and vanishes almost completely when kh ∼ kf . This
is in qualitative agreement with the results of direct numerical
simulations [12]. Recent experimental results [1] have shown
that an inverse energy cascade can take place also in fluid
layers whose depth exceeds the forcing correlation scale. The
upscale energy transfer is enhanced by nonlocal interactions
due to large coherent structures emerging because of spectral
condensation. Of course, this phenomenon is out of reach for
shell models, in which only local interactions are included by
construction.

An estimate of the amount of energy which is transferred
toward high wave numbers can be given by the following
argument. In the modified shell model the quantity H is no
longer globally conserved by the dynamics. On the other
hand it is still locally conserved by the interactions among
the shells with n < nh, allowing for the development of a
direct cascade with constant flux of H in the wave number
range kf < kn < kh. Such cascade transports also a residual
amount of energy $(kn) ' εI (kn/kf )−β up to the scale kh,
where the coefficients (a,b,c) change their values and the
3D-like cascade sets in with a constant flux of energy εν '
εI (kh/kf )−β . The fluxes measured in numerical simulations
of the model for different values of the scale separation
kh/kf are in perfect agreement with this prediction (see inset
of Fig. 2).

In analogy with the results obtained for the shell model,
it would be tempting to conjecture that in the split cascade
process, which takes place in a turbulent layer of depth
h, the fraction of energy which is transferred toward small
viscous scales should be determined by the flux of a partial
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§  What happens  
   with rotation  
   and  
   stratification  
   in an idealized setting? 
 



Nikurashin, 2009 

Latitude

D
ep

th
, [

m
]

 

 

−62.5 −62 −61.5 −61 −60.5 −60 −59.5 −59 −58.5 −58 −57.5
−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

Figure 3-1: Buoyancy frequency (s−1) in logarithmic scale from the ALBATROSS
section, Drake Passage.
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Figure 2 | Key observations in the Southern Ocean. a, Climatological positions of the subantarctic front (SAF) and polar front (PF) are marked in orange,
with the thickness of the line representing the variance in the latitudinal position. The green arrows indicate the observed speed and direction of surface
ocean currents as measured by drifters floating at a depth of 15 m (note the scale in the upper right-hand side). The depth of the ocean is colour coded in
blue: the main topographic features are labelled. The black lines mark the summer (minimum) and winter (maximum) extent of sea ice. The position of key
hydrographic sections are marked by the thick grey lines. b, T (temperature), S (salinity), and O2 sections along 30� E (coloured red in a) cutting across the
ACC from Africa towards Antarctica. Black contours are labelled in �C (for T), psu (for S) and µmol l�1 (for O2). The thick white line is the 27.6 kg m�3

density surface.

Dynamics of the SouthernOcean and its upwelling branch
The Southern Ocean is driven by surface fluxes of momentum and
density (owing to heat and fresh water) induced by the strong,
predominantly westerly winds that blow over it and the freezing
phenomena close to the continent33. Zonal wind stress (Fig. 4a)
induces upwelling polewards of the zonal surface-wind maximum
and downwelling equatorwards of the maximum. This directly

wind-driven circulation, known as the Deacon cell, acts to overturn
density surfaces supporting the thermal wind current of the ACC
and creating a store of available potential energy.

Air–sea fluxes generate dense water near the continent and
lighten the surface layers in the ACC (see Fig. 4b). The dense
water sinks and tends to draw in warmer, saltier water from the
surrounding ocean; however, rather than being fed from the surface,
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ergy-balance terms in k and assuming that the flux van-
ishes at the highest wavenumber, kmax:

!!k" # !
k

kmax

!Ah $ A"" dk. !10"

The spectral flux % is shown in Fig. 6 over the whole k
range for several simulations with different horizontal
resolution. Due to the open boundaries, some net en-
ergy input or output is possible, and we formally split
the flux as

! # !t $ !b,

where %t represents energy transfers inside the domain
and %b energy flux through the boundaries. The shapes
of Ah and A& in Fig. 3 imply that % ' 0 in the high-k
range. This positive % at high k is probably a conser-
vative estimate of a genuine forward energy cascade
%t ' 0 within the submesoscale range, based on the
following considerations. First, if anything, the open
boundaries should be a sink of high-k KE because the
submesoscale activity is nonexistent in the lateral
boundary conditions and it is much weaker beneath the
boundary layer (section 4 of Part I); this effect would
make %b ( 0 and %t ' % ' 0. The excluded coastal
upwelling zone could be both a location of important
%t ' 0 as well as a source of submesoscale energy for
the lateral interior, that is, contributing to %b ' 0 for
our analysis domain. To check this we performed a

spectral analysis for ICC0 within an even more re-
stricted 5122 domain that is well separated (by 200 km)
from the coast with respect to a typical advective ve-
locity and lifetime of submesoscale structures. The re-
sulting advective flux % has a similar k dependence as
the one represented in Fig. 6 but with a magnitude
reduced by )50%. This is at least partly because the
submesoscale activity level weakens somewhat with dis-
tance from the coast.4 So, we conclude that %t ' 0 is not
overly based on the behavior in the near-coastal region.
Finally, to assess the degree to which our results de-
pend on windowing, the analysis domain for ICC0 was
evenly subdivided into 4 and 16 subdomains, and an
advective flux was computed by averaging the fluxes
obtained over each subdomain (computed in a way
analogous to that for the full domain, including Han-
ning windowing). The stability of % vis-à-vis domain
size (Fig. 6) indicates the absence of spurious tapering
effect.

Independent of resolution, % changes sign at an in-
termediate wavenumber k% within the submesoscale
range since Ah becomes negative at larger k within the
submesoscale range. Notice that k% changes only
slightly with resolution from ICC3 to ICC1 and not
between ICC1 and ICC0 (k% * 2 + 10,4 rad m,1),
although the magnitude of % does increase significantly
with increasing resolution (Fig. 6). The range with % (
0 extends into the mesoscale k range and it indicates an
inverse KE cascade toward larger scales, consistent
with geostrophic turbulence. Because of the large sam-
pling uncertainty and the likelihood of a significant %b

component at larger scales (distorted by the window-
ing), we hesitate to draw any strong conclusions about
the efficacy of a mesoscale inverse KE cascade in
our solutions, although our results indicate it does oc-
cur to some degree [in agreement with the more reli-
able estimate by Klein et al. (2008) for a periodic do-
main].

b. Ageostrophic velocity and KE flux

We now assess the degree to which balanced and
unbalanced parts of the flow (section 5 of Part II) con-
tribute to the submesoscale forward kinetic energy cas-
cade. For this purpose, we make a Helmholtz decom-
position of the horizontal velocity into a horizontally
nondivergent part and its divergent residual:

u # uh $ wẑ # uhr $ !uhd $ wẑ",
!h # uhr # 0 ; ẑ # !h + uhd # 0. !11"

4 The same is true for the mesoscale activity both in our simu-
lations and more generally in eastern-boundary currents
(Marchesiello et al. 2003).

FIG. 6. KE transfer function %(k) [m2 s,3]. Results are shown
for simulations ICC3 with dx # 3 km (dotted–dashed line), ICC1
with dx # 1.5 km (dashed line), and ICC0 with dx # 0.75 km (solid
line) using a Hanning window. Also included are two estimates of
%(k) (dotted line) for ICC0 obtained by evenly dividing the di-
agnostic domain into 4 and 16 subdomains of sizes 3842 and 1922

grid points and averaging the resulting spectral fluxes.
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Figure 15. Spectral flux of kinetic energy (Reeff = 6600): BOUS (Ror = 0.5, black) and QG
(blue). Note the forward cascade for BOUS and inverse cascade for QG.

contrast, BOUS is characterized by a sustained forward energy cascade, allowing for
a dissipation efficiency that becomes independent of the Re value for large Re.

Our results for the QG energy cascade are consistent with, and partly anticipated
by, the closure-theoretic analysis by Hoyer & Sadourny (1982) of randomly forced,
equilibrium turbulence in a two-boundary, quasigeostrophic flow with zero interior
potential vorticity. They show that a large-scale, baroclinic, fluctuation energy source
(analogous to fluctuation generation by instability of the Eady flow in our problem)
has a volumetric total energy cascade that is net inverse, but with a finite wavenumber
range of forward volume available potential energy cascade with wb′ > 0 conversion
to volume kinetic energy; the total energy forward cascade asymptotically vanishes as
k → ∞ when Re → ∞ (their figures 2 and 5). Note that our results do not contradict
the well-established notion that available potential energy at the top and bottom
boundaries has a sustained forward cascade towards small scales (Blumen 1978;
Hoyer & Sadourny 1982). However, even though it may be tempting to focus on
surface quantities only for QG (because for zero interior potential vorticity, all
dynamics are controlled by advection of temperature at the boundaries), there is an
implied flow in the interior, and the physically relevant energy measure remains a
volume-averaged quantity.

5. Unbalanced flow
A central issue is the degree to which the BOUS flow satisfies a diagnostic force

balance. The more general horizontal force balance is gradient-wind balance, where
Coriolis force, pressure-gradient force and the advective centrifugal force in curved
flows provide the dominant terms in the divergence of the horizontal momentum
equation (McWilliams 1985):

−∇ · (uuuh · ∇huuuh) + f ζ z =
1

ρ
∇2

hp. (5.1)



21 

sink. Ageostrophic instabilities in the ocean interior [Müller
et al., 2005] or nonlinear coupling to internal gravity waves
(IGWs) [Buhler and McIntyre, 2005] could possibly lead
to significant energy dissipation of geostrophic flow, but
quantifying these in the World Ocean is a formidable
challenge [Polzin, 2008]. Propagation to the western
boundaries might play a significant role outside the South-
ern Ocean [Zhai et al., 2010], but most of the wind forcing
occurs in the Antarctic Circumpolar Current (ACC) where
baroclinic eddies seldom propagate westward [Fu, 2006]
and likely dissipate before reaching a coastline. In short,
despite great effort in studying the ocean’s energy budget
in the last two decades, the bulk of the dissipation of the
most energetic oceanic motions remains unaccounted for.
[3] The unsolved problem of the mechanical energy

budget has important ramifications, most notably in con-
sidering the role of turbulent diapycnal mixing in driving
the oceanic overturning circulation [e.g., Kuhlbrodt et al.,
2007]. For anticipating the intensity and distribution of
this diapycnal mixing requires knowledge of the sources of
mechanical energy and the pathways and processes that lead
to mechanical energy dissipation [e.g., Huang et al., 2006;
Scott and Xu, 2009]. Estimates of the abyssal power
required to maintain the overturning circulation vary but
could be as high as 2 or 3 TW [Webb and Suginohara, 2001;
Munk and Wunsch, 1998; St. Laurent and Simmons, 2006].
The wind work on the general circulation is a leading can-
didate for the ultimate power source driving the mixing,
supplementing important contributions from tidal conver-
sion in the deep ocean [Jayne and St. Laurent, 2001; Egbert
and Ray, 2003; Arbic et al., 2004; Egbert et al., 2004] and
possibly wind‐driven internal gravity waves [Alford, 2003;
Watanabe and Hibiya, 2002]. If a substantial fraction of the
wind work on the general circulation were to be dissipated
by small‐scale turbulence outside viscous boundary layers,
it would constitute a significant and possibly leading‐order
driver of diapycnal overturning in the deep ocean. Fine‐
structure estimates of the turbulent kinetic energy dissipa-
tion rate associated with IGW breaking in the Southern
Ocean [Naveira Garabato et al., 2004; Sloyan, 2005; Kunze
et al., 2006] point to this possibility. Those studies find
generally elevated levels of dissipation in the ACC, and
suggest that the bulk of the regional IGW field may be
sustained by interactions of the strong ACC flow with
the sea floor topography. These ideas are endorsed by
Nikurashin and Ferrari [2010], who combine observations
of the circulation and bathymetry of Drake Passage with
wave radiation theory to show that the IGW generation rate
in the area is large enough to support the dissipation rates
found by the preceding studies.
[4] Here we consider the global dissipation of mechanical

energy from the geostrophically balanced ocean circulation
via the generation of IGWs in the lee of topographic features
in the deep ocean. This mechanism of generating IGWs
was proposed by Bell [1975] and explained pedagogically
by [Gill, 1982, chapter 8]. As we discuss in more detail
in Section 2, the IGW generation rate (or vertical flux of
energy) depends upon the buoyancy stratification above the
topography N, the geostrophic flow rate above the topog-
raphy U (generally treated as steady on timescales of IGW
generation), and the roughness of the bottom topography

on horizontal length scales 1/k short enough to generate
IGWs via steady flow,

U
N

<
1
k

<
U
j f0j

; ð1Þ

where k is the horizontal wavenumber and f0 is the local
vertical component of the Coriolis frequency. For typical
deep ocean parameters, the relevant length scales are
between about 100 m and 5 km, which is much smaller than
that associated with internal tide production. The primary
challenge for this calculation was obtaining global statistics
of the seafloor topography on these length scales, which are
well below those resolved by global topographic data sets
[Smith and Sandwell, 1997, 2004]. What has made this
calculation possible is the recent development of two almost
independent quasi‐global estimates of small‐scale topo-
graphic roughness statistics [Goff and Arbic, 2010, herein-
after GA2010; Goff, 2010, hereinafter G2010]. The former
uses a statistical modeling approach that predicts small‐scale
roughness properties based on paleo‐spreading rates and
directions modified for sediment cover. In the latter, gravity
roughness on scales less than about 100 km is first com-
puted after masking of large‐scale features such as sea-
mounts and spreading ridges, application of a directional
filtering algorithm to remove fractures zones and disconti-
nuity traces, and subtraction of estimated noise contribu-
tions. The statistical properties of abyssal hill morphology
at the seafloor are related to this residual roughness by
‘upward continuation’: a projection of the gravity signature
at the seafloor to the sea surface, which works as a linear
filter on the topographic spectrum, dependent on water
depth and seafloor/water density contrast [Smith, 1998]. See
G2010 for further details.
[5] As with many geophysical calculations and especially

global ones, the calculation of the most recent best estimate
is much easier than estimating the uncertainty in that esti-
mate. And while the need for attempting quantitative error
estimates is easy to find in the literature, it is much harder
to find published quantitative error estimates. Herein we
employ the strategy of Scott and Xu [2009] and in lieu of
rigorous error estimates use sensitivity tests with indepen-
dent data sets. Both global estimates of small‐scale topo-
graphic roughness statistics were used to produce global
maps of the rate of lee wave generation and several sensi-
tivity tests were performed. First we briefly review the
theory and describe the calculation procedure in Section 2,
including properties of the data sets employed. In Section 3
we present the maps of lee wave generation rate including
all the sensitivity experiments. We conclude in Section 4
with a brief discussion of some of the implications for the
World Ocean mechanical energy budget, the maintenance
of the oceanic overturning circulation, and ocean modeling.

2. Theory and Methods

2.1. Internal Lee Wave Generation Theory
[6] The mechanism by which geostrophically balanced

flow over topography generates IGWs (also called internal
lee waves) is explained by Gill [1982, chapter 8]. Under
the traditional approximation of ignoring the horizontal

SCOTT ET AL.: LEE WAVE GENERATION C09029C09029
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Large-scale spectra, N/f=2 
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related to the ratios LF=‘oz and LF=‘diss, where ‘diss is the
dissipation wavelength. The shallower spectrum is close to
a Kolmogorov solution !Kol ¼ 5=3, expected (possibly
with small intermittency corrections) once the small scales
recover isotropy for high enough RB (see [31] for the
rotating case).

The inset in Fig. 2 gives the temporal variation of EV

(solid lines) and (scaled) dissipation DV ¼ 2"hj!j2i
(dashed lines). The steady energy increase, after an initial
transient, is typical of inverse cascades. The variation of
the ratio of inverse to direct flux with the buoyancy
Reynolds number is indicative of the increased effective-
ness of turbulence as RB grows. One can also expect this
ratio to decrease as N=f increases since no inverse cascade
occurs in the purely stratified case [30].

Such direct cascades of energy in rotating stratified
turbulence have been analyzed using theoretical closure
models of turbulence [37]. Dual cascades were also found
when examining AVISO altimeter data for the Kuroshio
current [13], with values of R! approaching those of
oceanic data for the largest imposed turbulent (horizontal)
viscosity. Whereas these authors conclude to some ambi-
guity in the interpretation of their results due to the neces-
sary filtering of the data, our DNS of the Boussinesq
equations unambiguously show that dual energy cascades
are realistic outcomes in a geophysical setting. The higher
values of R! found in our runs likely reflect the fact that
buoyancy is not dominant in our DNS, with N=f " 4.
However, we note that the abyssal southern ocean at mid
latitudes has N=f as low as 4 or 5 and shows considerable
mixing [1,38].

Conclusion and discussion.—We have shown in this
Letter that a dual (direct and inverse) constant flux

energy cascade is present in rotating stratified turbulence,
thereby resolving the paradox noted by some authors (see,
e.g., [4,13]) and thus adding credence to having both geo-
strophic balance and anomalous transport in geophysical
turbulence. The computations clearly point out the possi-
bility of the coexistence in the ocean and the atmosphere of
idealized large-scale dynamics dominated by quasigeo-
strophic motions, together with the production of small
scales, essential to transport [38].
More computations and data analysis are required to

categorize in a quantitative way the duality of the energy
cascade, as well as the mixing efficiency one can expect in
rotating stratified flows. For example, the variation of R!

with the relevant dimensionless parameters, such as Re,
N=f, and RB, as well as LF ¼ 2#=kF (when measured
relative to L0, ‘oz and ‘diss), is an open problem which will
require huge numerical as well as observational resources.
In that context, two-point closures of turbulence (see, e.g.,
[9]), so-called shell models as used in [16] but generalized
to include both rotation and stratification, as well as sub-
grid scale modeling of small-scale dynamics may be intro-
duced to study this phenomenon in a thorough parametric
fashion (see, e.g., [39] for rotating flows), varying the
forcing mechanisms as well.
However, there are some indications of a dual flux, using

quasigeostrophy [13], or in more complex settings using a
numerical oceanic model applied to the California coastal
current [40]. This somewhat paradoxical behavior of the
energy directivity can be understood if one recalls that
triadic energetic exchanges can be either positive or nega-
tive, and it is a delicate balance between the two that
determines the overall sign of the flux, as also found for
helical flows [18].

(a) (b)

FIG. 2 (color online). (a) Kinetic energy spectra for Run 10d (red line), 10e (blue line), and 15a (black line), all with N=f ¼ 2 and
increasing RB ¼ ReFr2. The straight lines with different power laws are given as indications. In the bottom inset are shown the
temporal evolution of the kinetic energy for the same runs (solid lines), together with their (scaled) dissipation (dashed lines)
5# 2"hj!j2i, with ! ¼ r# u the vorticity. The spectra, not averaged in time, are shown at t=$NL $ 22, whereas the peak of
dissipation occurs for all the runs around t=$NL $ 1:3, time after which the energy starts to grow, with $NL ¼ LF=U0 the turnover time.
(b) Total (kinetic plus potential) energy fluxes normalized by energy input %V ¼ hu % Fi for the same runs, as well as for runs 10a
(magenta dashed line), 10b (green dashed line), and 10c (cyan dashed line) for which N=f ¼ 4.
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related to the ratios LF=‘oz and LF=‘diss, where ‘diss is the
dissipation wavelength. The shallower spectrum is close to
a Kolmogorov solution !Kol ¼ 5=3, expected (possibly
with small intermittency corrections) once the small scales
recover isotropy for high enough RB (see [31] for the
rotating case).

The inset in Fig. 2 gives the temporal variation of EV

(solid lines) and (scaled) dissipation DV ¼ 2"hj!j2i
(dashed lines). The steady energy increase, after an initial
transient, is typical of inverse cascades. The variation of
the ratio of inverse to direct flux with the buoyancy
Reynolds number is indicative of the increased effective-
ness of turbulence as RB grows. One can also expect this
ratio to decrease as N=f increases since no inverse cascade
occurs in the purely stratified case [30].

Such direct cascades of energy in rotating stratified
turbulence have been analyzed using theoretical closure
models of turbulence [37]. Dual cascades were also found
when examining AVISO altimeter data for the Kuroshio
current [13], with values of R! approaching those of
oceanic data for the largest imposed turbulent (horizontal)
viscosity. Whereas these authors conclude to some ambi-
guity in the interpretation of their results due to the neces-
sary filtering of the data, our DNS of the Boussinesq
equations unambiguously show that dual energy cascades
are realistic outcomes in a geophysical setting. The higher
values of R! found in our runs likely reflect the fact that
buoyancy is not dominant in our DNS, with N=f " 4.
However, we note that the abyssal southern ocean at mid
latitudes has N=f as low as 4 or 5 and shows considerable
mixing [1,38].

Conclusion and discussion.—We have shown in this
Letter that a dual (direct and inverse) constant flux

energy cascade is present in rotating stratified turbulence,
thereby resolving the paradox noted by some authors (see,
e.g., [4,13]) and thus adding credence to having both geo-
strophic balance and anomalous transport in geophysical
turbulence. The computations clearly point out the possi-
bility of the coexistence in the ocean and the atmosphere of
idealized large-scale dynamics dominated by quasigeo-
strophic motions, together with the production of small
scales, essential to transport [38].
More computations and data analysis are required to

categorize in a quantitative way the duality of the energy
cascade, as well as the mixing efficiency one can expect in
rotating stratified flows. For example, the variation of R!

with the relevant dimensionless parameters, such as Re,
N=f, and RB, as well as LF ¼ 2#=kF (when measured
relative to L0, ‘oz and ‘diss), is an open problem which will
require huge numerical as well as observational resources.
In that context, two-point closures of turbulence (see, e.g.,
[9]), so-called shell models as used in [16] but generalized
to include both rotation and stratification, as well as sub-
grid scale modeling of small-scale dynamics may be intro-
duced to study this phenomenon in a thorough parametric
fashion (see, e.g., [39] for rotating flows), varying the
forcing mechanisms as well.
However, there are some indications of a dual flux, using

quasigeostrophy [13], or in more complex settings using a
numerical oceanic model applied to the California coastal
current [40]. This somewhat paradoxical behavior of the
energy directivity can be understood if one recalls that
triadic energetic exchanges can be either positive or nega-
tive, and it is a delicate balance between the two that
determines the overall sign of the flux, as also found for
helical flows [18].

(a) (b)

FIG. 2 (color online). (a) Kinetic energy spectra for Run 10d (red line), 10e (blue line), and 15a (black line), all with N=f ¼ 2 and
increasing RB ¼ ReFr2. The straight lines with different power laws are given as indications. In the bottom inset are shown the
temporal evolution of the kinetic energy for the same runs (solid lines), together with their (scaled) dissipation (dashed lines)
5# 2"hj!j2i, with ! ¼ r# u the vorticity. The spectra, not averaged in time, are shown at t=$NL $ 22, whereas the peak of
dissipation occurs for all the runs around t=$NL $ 1:3, time after which the energy starts to grow, with $NL ¼ LF=U0 the turnover time.
(b) Total (kinetic plus potential) energy fluxes normalized by energy input %V ¼ hu % Fi for the same runs, as well as for runs 10a
(magenta dashed line), 10b (green dashed line), and 10c (cyan dashed line) for which N=f ¼ 4.
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RΠ = 	

εinv/εdir 

0.02 0.04 0.06 0.08 0.1 0.12 0.14

100

101

   N/f = 2
   N/f = 4
   N/f = 5
   N/f = 7
   N/f = 8
   N/f = 10.5

 33

 47  105

 36

 11

 4

 313

 40

 37

 44

 45

 48

 28

 26

 11

 12 5
 17

 31

 39

 35

 30

 33  40

 51

 57

Fr

 R
W

a

y=e(Bx)+A

* Point labeled with values of RB = Re Fr2 



38 

RΠ =εinv/εdir 
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RΠ =εinv/εdir 
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Inverse cascade of potential energy? 
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Is there an enstrophy cascade? 
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        Summary, future work and open questions 
 
 Scaling with [Fr*Ro]-1 of the flux ratio of the bi-directional cascade 
 
•  Anisotropic analysis & normal modes decomposition 
•  Role of helicity? Role of conservation of potential vorticity? 
•  Cascade of enstrophy? Of potential energy? 
 
•  Long-time accumulation at k=1, & large-scale friction? 
•  Different forcing, e.g. two-dimensional or balanced? 
•  Criticality? 

•  Lagrangian particles, mixing and passive scalar  
        in a dual cascade 
 
Different regimes: What are the characteristic break-up scales  
for energy partition, and how do such scales vary with parameters? 

•  Modeling with anisotropic eddy viscosity (>0, <0)? 
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§ Thank you for your attention  


